Quasi-localization and Wannier obstruction in partially flat bands

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jin-Hong Park, Jun-Won Rhim
{"title":"Quasi-localization and Wannier obstruction in partially flat bands","authors":"Jin-Hong Park, Jun-Won Rhim","doi":"10.1038/s42005-024-01679-6","DOIUrl":null,"url":null,"abstract":"The localized nature of a flat band is understood by the existence of a compact localized eigenstate. However, the localization properties of a partially flat band, ubiquitous in surface modes of topological semimetals, have been unknown. We show that the partially flat band is characterized by a non-normalizable quasi-compact localized state (Q-CLS), which is compactly localized along several directions but extended in at least one direction. The partially flat band develops at momenta where normalizable Bloch wave functions can be obtained from a linear combination of the non-normalizable Q-CLSs. Outside this momentum region, a ghost flat band, unseen from the band structure, is introduced based on a counting argument. Then, we demonstrate that the Wannier function corresponding to the partially flat band exhibits an algebraic decay behavior. Namely, one can have the Wannier obstruction in a band with a vanishing Chern number if it is partially flat. Finally, we develop the construction scheme of a tight-binding model for a topological semimetal by designing a Q-CLS. Compact localized states constitute an auxiliary state representation for a flat-band lattice system with wave functions non-zero only in a finite portion of the lattice. Here, the authors show that in some flat-band systems, these states can be partially “hidden”; surprisingly, these ghost flat bands present an obstruction to be represented as maximally localized Wannier functions.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01679-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01679-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The localized nature of a flat band is understood by the existence of a compact localized eigenstate. However, the localization properties of a partially flat band, ubiquitous in surface modes of topological semimetals, have been unknown. We show that the partially flat band is characterized by a non-normalizable quasi-compact localized state (Q-CLS), which is compactly localized along several directions but extended in at least one direction. The partially flat band develops at momenta where normalizable Bloch wave functions can be obtained from a linear combination of the non-normalizable Q-CLSs. Outside this momentum region, a ghost flat band, unseen from the band structure, is introduced based on a counting argument. Then, we demonstrate that the Wannier function corresponding to the partially flat band exhibits an algebraic decay behavior. Namely, one can have the Wannier obstruction in a band with a vanishing Chern number if it is partially flat. Finally, we develop the construction scheme of a tight-binding model for a topological semimetal by designing a Q-CLS. Compact localized states constitute an auxiliary state representation for a flat-band lattice system with wave functions non-zero only in a finite portion of the lattice. Here, the authors show that in some flat-band systems, these states can be partially “hidden”; surprisingly, these ghost flat bands present an obstruction to be represented as maximally localized Wannier functions.

Abstract Image

部分平坦带中的准定位和万尼尔阻塞
平带的局部性可以通过存在一个紧凑的局部特征状态来理解。然而,拓扑半金属表面模式中无处不在的部分平坦带的局域化特性却一直不为人知。我们的研究表明,部分平坦带的特征是非正态化的准紧凑局域态(Q-CLS),它沿着几个方向紧凑局域,但至少在一个方向上扩展。部分平坦带出现在可正则化布洛赫波函数可以从非正则化 Q-CLS 的线性组合中获得的动量处。在这一动量区域之外,我们根据计数论证引入了一个从带状结构中看不到的幽灵平带。然后,我们证明了与部分平坦带相对应的万尼尔函数表现出代数衰减行为。也就是说,如果一个带是部分平坦的,那么在一个切尔数消失的带中就会出现万尼尔阻碍。最后,我们通过设计 Q-CLS 发展了拓扑半金属紧约束模型的构造方案。紧凑局域态构成了平带晶格系统的辅助状态表示,其波函数只在晶格的有限部分不为零。作者在本文中指出,在某些平带系统中,这些态可以部分 "隐藏 "起来;令人惊讶的是,这些幽灵平带阻碍了最大局部万尼尔函数的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信