Yunchuan Sun, Xiaoping Zeng, Ying Xu, Hong Yue, Xipu Yu
{"title":"An intelligent detecting model for financial frauds in Chinese A-share market","authors":"Yunchuan Sun, Xiaoping Zeng, Ying Xu, Hong Yue, Xipu Yu","doi":"10.1111/ecpo.12283","DOIUrl":null,"url":null,"abstract":"<p>Financial frauds can cause serious damage to financial markets but are hard to detect manually. In this study, we develop an intelligent detecting model to efficiently identify financial frauds by using XGBoost on raw financial data items in corporation financial statements. With listed companies in Chinese A-share Market taken as samples, empirical results reveal that the proposed model works better than traditional models by a large margin in detecting fraud. Notably, the proposed model exhibits superior performance when used together with raw financial data items than with financial indicators. Moreover, the proposed model remains robust on outperformance in fraud detection when serial fraud cases are recoded, test periods are altered, more raw financial data are input, as well as other machine learning models–the AdaBoost and SVM–are selected as benchmark models. Our study enriches the application of machine learning in finance sector, and highlights the economic significance of raw financial data as the financial system's most fundamental components.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"36 2","pages":"1110-1136"},"PeriodicalIF":16.4000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecpo.12283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Financial frauds can cause serious damage to financial markets but are hard to detect manually. In this study, we develop an intelligent detecting model to efficiently identify financial frauds by using XGBoost on raw financial data items in corporation financial statements. With listed companies in Chinese A-share Market taken as samples, empirical results reveal that the proposed model works better than traditional models by a large margin in detecting fraud. Notably, the proposed model exhibits superior performance when used together with raw financial data items than with financial indicators. Moreover, the proposed model remains robust on outperformance in fraud detection when serial fraud cases are recoded, test periods are altered, more raw financial data are input, as well as other machine learning models–the AdaBoost and SVM–are selected as benchmark models. Our study enriches the application of machine learning in finance sector, and highlights the economic significance of raw financial data as the financial system's most fundamental components.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.