A class of rearrangement groups that are not invariably generated

IF 0.8 3区 数学 Q2 MATHEMATICS
Davide Perego, Matteo Tarocchi
{"title":"A class of rearrangement groups that are not invariably generated","authors":"Davide Perego,&nbsp;Matteo Tarocchi","doi":"10.1112/blms.13046","DOIUrl":null,"url":null,"abstract":"<p>A group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is invariably generated if there exists a subset <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>⊆</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$S \\subseteq G$</annotation>\n </semantics></math> such that, for every choice <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>g</mi>\n <mi>s</mi>\n </msub>\n <mo>∈</mo>\n <mi>G</mi>\n </mrow>\n <annotation>$g_s \\in G$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>∈</mo>\n <mi>S</mi>\n </mrow>\n <annotation>$s \\in S$</annotation>\n </semantics></math>, the group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is generated by <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msup>\n <mi>s</mi>\n <msub>\n <mi>g</mi>\n <mi>s</mi>\n </msub>\n </msup>\n <mo>∣</mo>\n <mi>s</mi>\n <mo>∈</mo>\n <mi>S</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace s^{g_s} \\mid s \\in S \\rbrace$</annotation>\n </semantics></math>. Gelander, Golan, and Juschenko (<i>J. Algebra</i> <b>478</b> (2016), 261–270) showed that Thompson groups <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> are not invariably generated. Here, we generalize this result to the larger setting of rearrangement groups, proving that any subgroup of a rearrangement group that has a certain transitive property is not invariably generated.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 6","pages":"2115-2131"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13046","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A group G $G$ is invariably generated if there exists a subset S G $S \subseteq G$ such that, for every choice g s G $g_s \in G$ for s S $s \in S$ , the group G $G$ is generated by { s g s s S } $\lbrace s^{g_s} \mid s \in S \rbrace$ . Gelander, Golan, and Juschenko (J. Algebra 478 (2016), 261–270) showed that Thompson groups T $T$ and V $V$ are not invariably generated. Here, we generalize this result to the larger setting of rearrangement groups, proving that any subgroup of a rearrangement group that has a certain transitive property is not invariably generated.

一类并非一成不变生成的重排基团
如果存在一个子集 S ⊆ G $S \subseteq G$,使得对于每一个选择 g s ∈ G $g_s \in G$ for s ∈ S $s \in S$,群 G $G$ 由 { s g s ∣ s∈ S } 生成,那么群 G $G$ 不变地生成。 $lbrace s^{g_s}\mid s \in S \rbrace$ .Gelander、Golan 和 Juschenko (J. Algebra 478 (2016), 261-270) 证明汤普森群 T $T$ 和 V $V$ 并非不变地生成。在此,我们将这一结果推广到更大的重排群环境中,证明重排群的任何子群,只要具有一定的传递性质,都不是不变生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信