Notch tip hydrogen assisted microdamage in fully pearlitic steel: The Tearing Topography Surface (TTS)

Jesús Toribio
{"title":"Notch tip hydrogen assisted microdamage in fully pearlitic steel: The Tearing Topography Surface (TTS)","authors":"Jesús Toribio","doi":"10.1016/j.prostr.2024.04.015","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes the hydrogen assisted microdamage (HAMD) region in high-strength eutectoid pearlitic steel on the basis of slow strain rate tests (SSRT) on axisymmetric round-notched samples under hydrogen embrittlement environmental conditions. The use of very different notched specimens and their associated stress and strain distributions in the vicinity of the notch tip allows a study of local triaxiality effects on hydrogen embrittlement of the round notched samples, as well as the important role of the hydrostatic stress state on hydrogen diffusion and micro-cracking (or micro-damage). The microscopic appearance of the hydrogen-affected region –the so-called <em>tearing topography surface</em> (TTS)– resembles micro-damage, micro-cracking or micro-tearing at a micro- or nano-scale due to hydrogen degradation, thereby affecting the notch tensile strength of the specimens and producing the phenomenon of hydrogen embrittlement/degradation. A micromechanical model is proposed to explain these hydrogen effects on the material on the basis of the lamellar micro- and nano-structure of the pearlitic steel under consideration.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321624003251/pdf?md5=eb4ce25ef10f0fa28f7a3707a62d2134&pid=1-s2.0-S2452321624003251-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624003251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes the hydrogen assisted microdamage (HAMD) region in high-strength eutectoid pearlitic steel on the basis of slow strain rate tests (SSRT) on axisymmetric round-notched samples under hydrogen embrittlement environmental conditions. The use of very different notched specimens and their associated stress and strain distributions in the vicinity of the notch tip allows a study of local triaxiality effects on hydrogen embrittlement of the round notched samples, as well as the important role of the hydrostatic stress state on hydrogen diffusion and micro-cracking (or micro-damage). The microscopic appearance of the hydrogen-affected region –the so-called tearing topography surface (TTS)– resembles micro-damage, micro-cracking or micro-tearing at a micro- or nano-scale due to hydrogen degradation, thereby affecting the notch tensile strength of the specimens and producing the phenomenon of hydrogen embrittlement/degradation. A micromechanical model is proposed to explain these hydrogen effects on the material on the basis of the lamellar micro- and nano-structure of the pearlitic steel under consideration.

全珠光体钢的缺口尖端氢辅助微损伤:撕裂形貌表面 (TTS)
本文基于氢脆环境条件下轴对称圆形缺口试样的慢应变速率试验(SSRT),分析了高强度共晶珠光体钢中的氢辅助微损伤(HAMD)区域。通过使用截然不同的缺口试样及其缺口尖端附近的相关应力和应变分布,研究了局部三轴性对圆形缺口试样氢脆的影响,以及静水应力状态对氢扩散和微裂纹(或微损伤)的重要作用。受氢影响区域的微观外观--即所谓的撕裂形貌表面(TTS)--类似于氢降解引起的微米或纳米尺度的微损伤、微裂纹或微撕裂,从而影响试样的缺口抗拉强度,产生氢脆/降解现象。根据所研究的珠光体钢的片状微观和纳米结构,提出了一个微观力学模型来解释氢对材料的这些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信