Isosorbide-based Poly(arylene ether) biopolymer membranes for gas separation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Jeong Uk Ryu , Hyun Jung Yu , Jeongho Seong , Hyung-Ju Kim , Jeyoung Park , Jong Suk Lee
{"title":"Isosorbide-based Poly(arylene ether) biopolymer membranes for gas separation","authors":"Jeong Uk Ryu ,&nbsp;Hyun Jung Yu ,&nbsp;Jeongho Seong ,&nbsp;Hyung-Ju Kim ,&nbsp;Jeyoung Park ,&nbsp;Jong Suk Lee","doi":"10.1016/j.memsci.2024.122928","DOIUrl":null,"url":null,"abstract":"<div><p>Efforts to utilize biopolymer membranes to diminish the carbon footprint of separation processes are ongoing. Herein, we report the fabrication of isosorbide (ISB)-based poly(arylene ether) biopolymer membranes, including ISB-based poly(arylene ether sulfone) (I-PAES) and ISB-based poly(arylene ether ketone) (I-PAEK) for gas separation. The robust mechanical properties and amorphous nature of ISB-based biopolymers allow for their application to gas separations. Both positron annihilation lifetime spectroscopy (PALS) and free volume analysis using density measurements reveal that replacing bisphenol A (BPA) in polysulfone (PSF) with ISB results in a significant reduction in free volume owing to the absence of bulky dimethyl groups and the presence of polar aliphatic ether groups. Substituting the sulfone group for a ketone group further decreased free volume. Solid-state CP/MAS <sup>13</sup>C NMR analysis discloses that substituting ISB and replacing sulfonyl moieties with carbonyl groups restricts the rotational motion of internal rings, resulting in inhibited gas diffusion. Consequently, the I-PAEK membrane exhibited H<sub>2</sub>/CO<sub>2</sub> and H<sub>2</sub>/CH<sub>4</sub> selectivities more than three times and five times higher, respectively, compared to the PSF counterpart. Our present study demonstrates the feasibility of ISB-based poly(arylene ether) biopolymer membranes for gas separation.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824005222","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to utilize biopolymer membranes to diminish the carbon footprint of separation processes are ongoing. Herein, we report the fabrication of isosorbide (ISB)-based poly(arylene ether) biopolymer membranes, including ISB-based poly(arylene ether sulfone) (I-PAES) and ISB-based poly(arylene ether ketone) (I-PAEK) for gas separation. The robust mechanical properties and amorphous nature of ISB-based biopolymers allow for their application to gas separations. Both positron annihilation lifetime spectroscopy (PALS) and free volume analysis using density measurements reveal that replacing bisphenol A (BPA) in polysulfone (PSF) with ISB results in a significant reduction in free volume owing to the absence of bulky dimethyl groups and the presence of polar aliphatic ether groups. Substituting the sulfone group for a ketone group further decreased free volume. Solid-state CP/MAS 13C NMR analysis discloses that substituting ISB and replacing sulfonyl moieties with carbonyl groups restricts the rotational motion of internal rings, resulting in inhibited gas diffusion. Consequently, the I-PAEK membrane exhibited H2/CO2 and H2/CH4 selectivities more than three times and five times higher, respectively, compared to the PSF counterpart. Our present study demonstrates the feasibility of ISB-based poly(arylene ether) biopolymer membranes for gas separation.

Abstract Image

用于气体分离的异山梨醇基聚芳基醚生物聚合物膜
利用生物聚合物膜减少分离过程碳足迹的努力一直在进行。在此,我们报告了异山梨醇醚(ISB)基聚(芳基醚)生物聚合物膜的制造过程,包括用于气体分离的 ISB 基聚(芳基醚砜)(I-PAES)和 ISB 基聚(芳基醚酮)(I-PAEK)。基于 ISB 的生物聚合物具有坚固的机械性能和无定形性质,因此可用于气体分离。正电子湮灭寿命光谱法(PALS)和使用密度测定法进行的自由体积分析表明,用 ISB 取代聚砜(PSF)中的双酚 A(BPA)可显著减少自由体积,原因是不存在笨重的二甲基基团和极性脂肪族醚基团。用酮基取代砜基会进一步减少自由体积。固态 CP/MAS 13C NMR 分析表明,用羰基取代 ISB 和磺酰基会限制内环的旋转运动,从而抑制气体扩散。因此,与 PSF 相比,I-PAEK 膜的 H2/CO2 和 H2/CH4 选择性分别高出三倍和五倍以上。本研究证明了基于 ISB 的聚(芳基醚)生物聚合物膜用于气体分离的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信