Yuerong Liu , Lulu Yang , Yongxin Ma, Yufei Zhou, Shangyu Zhang, Qianwei Liu, Fengwang Ma, Changhai Liu
{"title":"The HD-Zip I transcription factor MdHB-7 negatively regulates resistance to Glomerella leaf spot in apple","authors":"Yuerong Liu , Lulu Yang , Yongxin Ma, Yufei Zhou, Shangyu Zhang, Qianwei Liu, Fengwang Ma, Changhai Liu","doi":"10.1016/j.jplph.2024.154277","DOIUrl":null,"url":null,"abstract":"<div><p>Glomerella leaf spot (GLS), caused by <em>Colletotrichum fructicola</em> (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of <em>MdHB-7</em> overexpressing (<em>MdHB-7-</em>OE) and interference (<em>MdHB-7-</em>RNAi) transgenic plants with Cf revealed that <em>MdHB-7</em>, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants; the content of ABA and the expression of ABA biosynthesis genes were higher in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants. Further analysis indicated that the content of phenolics and chitinase and β-1, 3 glucanase activities were lower and H<sub>2</sub>O<sub>2</sub> accumulation was higher in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants. The opposite patterns were observed in <em>MdHB-7-</em>RNAi apple plants. Overall, our results indicate that <em>MdHB-7</em> plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H<sub>2</sub>O<sub>2</sub>.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"299 ","pages":"Article 154277"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001081","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of MdHB-7 overexpressing (MdHB-7-OE) and interference (MdHB-7-RNAi) transgenic plants with Cf revealed that MdHB-7, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in MdHB-7-OE plants than in ‘GL-3’ plants; the content of ABA and the expression of ABA biosynthesis genes were higher in MdHB-7-OE plants than in ‘GL-3’ plants. Further analysis indicated that the content of phenolics and chitinase and β-1, 3 glucanase activities were lower and H2O2 accumulation was higher in MdHB-7-OE plants than in ‘GL-3’ plants. The opposite patterns were observed in MdHB-7-RNAi apple plants. Overall, our results indicate that MdHB-7 plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H2O2.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.