Andrey V. Basko , Tatyana N. Lebedeva , Mikhail Y. Yurov , Alexander S. Zabolotnov , Sergey S. Gostev , Sergey S. Gusarov , Konstantin V. Pochivalov
{"title":"Thermally induced phase separation of UHMWPE mixture with dioctyl adipate: Competition of liquid–liquid phase separation and polymer crystallization","authors":"Andrey V. Basko , Tatyana N. Lebedeva , Mikhail Y. Yurov , Alexander S. Zabolotnov , Sergey S. Gostev , Sergey S. Gusarov , Konstantin V. Pochivalov","doi":"10.1016/j.tca.2024.179787","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal behavior of ultra-high molecular weight polyethylene (UHMWPE) with dioctyl adipate (DOA) was investigated by the differential scanning calorimetry (DSC) method. Capillary-porous bodies were obtained via thermally induced phase separation of DOA mixtures with polyethylenes of different molecular weight at different cooling rates. Analysis of the morphology of the prepared porous bodies together with DSC data and results of cloud point estimation revealed an unexpected effect of a cooling rate on the type of phase separation occurring in the mixture during its cooling from homogeneous state. Particularly it was shown that increase in the cooling rate reduces the probability of realization of liquid – liquid phase separation in the mixture. It was argued that such behavior, different from the standard semicrystalline polymers, is a result of kinetic hindrance of liquid – liquid phase separation in mixtures containing a polymer with such a high molecular weight.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001266","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The thermal behavior of ultra-high molecular weight polyethylene (UHMWPE) with dioctyl adipate (DOA) was investigated by the differential scanning calorimetry (DSC) method. Capillary-porous bodies were obtained via thermally induced phase separation of DOA mixtures with polyethylenes of different molecular weight at different cooling rates. Analysis of the morphology of the prepared porous bodies together with DSC data and results of cloud point estimation revealed an unexpected effect of a cooling rate on the type of phase separation occurring in the mixture during its cooling from homogeneous state. Particularly it was shown that increase in the cooling rate reduces the probability of realization of liquid – liquid phase separation in the mixture. It was argued that such behavior, different from the standard semicrystalline polymers, is a result of kinetic hindrance of liquid – liquid phase separation in mixtures containing a polymer with such a high molecular weight.
采用差示扫描量热法(DSC)研究了超高分子量聚乙烯(UHMWPE)与己二酸二辛酯(DOA)的热行为。在不同冷却速率下,通过热诱导 DOA 混合物与不同分子量聚乙烯的相分离,获得了毛细管多孔体。对制备的多孔体的形态分析以及 DSC 数据和浊点估算结果表明,冷却速率对混合物从均匀状态冷却过程中发生的相分离类型有意想不到的影响。特别是冷却速度的增加降低了混合物中液相分离的概率。研究认为,这种不同于标准半结晶聚合物的行为,是由于在含有高分子量聚合物的混合物中,液-液相分离受到了动力学阻碍。
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes