Mingjie Li , Yunhan Liu , Weiwei Jiang , Yuxuan Zhu , Jiuchuan Jiang , Mingfeng Jiang , Shuqing Li
{"title":"Improved negative sampling method in collaborative filtering recommendation based on Generative adversarial network","authors":"Mingjie Li , Yunhan Liu , Weiwei Jiang , Yuxuan Zhu , Jiuchuan Jiang , Mingfeng Jiang , Shuqing Li","doi":"10.1016/j.elerap.2024.101412","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The problem of low model performance caused by the lack of negative samples in the recommendation method based on implicit feedback information can be solved.</p></div><div><h3>Methods</h3><p>The implicit feedback recommendation model DAEGAN is constructed based on the conditional generative adversarial network framework. The Denoising Auto-Encoder is used as a generator to capture nonlinear potential factors in the interaction and improve the robustness of model. In this paper, a strong and weak negative sampling strategy is proposed, which combines the visibility of user in time points to mine uninteresting items and acquire strong negative samples, and injects these information into the model by modifying the masking mechanism to solve the problem of missing negative samples.</p></div><div><h3>Results</h3><p>Experiments on MovieLens 100 K, Amazon Movie and TV, MovieLens 1 M datasets show that the recommendation accuracy of CFGAN based on strong and weak negative sampling and DAEGAN proposed in this paper has been improved.</p></div><div><h3>Limitations</h3><p>The generation of strong negative samples is based on user interaction records, which cannot solve effectively cold start problems in extremely sparse data.</p></div><div><h3>Conclusions</h3><p>After DAEGAN application, the strong and weak negative sampling method proposed in this paper has generally higher recommendation accuracy than those mainstream recommendation algorithms. The code is available at <span>https://github.com/nanjingzhuyuxuan/DAEGAN</span><svg><path></path></svg>.</p></div>","PeriodicalId":50541,"journal":{"name":"Electronic Commerce Research and Applications","volume":"66 ","pages":"Article 101412"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Commerce Research and Applications","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567422324000577","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The problem of low model performance caused by the lack of negative samples in the recommendation method based on implicit feedback information can be solved.
Methods
The implicit feedback recommendation model DAEGAN is constructed based on the conditional generative adversarial network framework. The Denoising Auto-Encoder is used as a generator to capture nonlinear potential factors in the interaction and improve the robustness of model. In this paper, a strong and weak negative sampling strategy is proposed, which combines the visibility of user in time points to mine uninteresting items and acquire strong negative samples, and injects these information into the model by modifying the masking mechanism to solve the problem of missing negative samples.
Results
Experiments on MovieLens 100 K, Amazon Movie and TV, MovieLens 1 M datasets show that the recommendation accuracy of CFGAN based on strong and weak negative sampling and DAEGAN proposed in this paper has been improved.
Limitations
The generation of strong negative samples is based on user interaction records, which cannot solve effectively cold start problems in extremely sparse data.
Conclusions
After DAEGAN application, the strong and weak negative sampling method proposed in this paper has generally higher recommendation accuracy than those mainstream recommendation algorithms. The code is available at https://github.com/nanjingzhuyuxuan/DAEGAN.
期刊介绍:
Electronic Commerce Research and Applications aims to create and disseminate enduring knowledge for the fast-changing e-commerce environment. A major dilemma in e-commerce research is how to achieve a balance between the currency and the life span of knowledge.
Electronic Commerce Research and Applications will contribute to the establishment of a research community to create the knowledge, technology, theory, and applications for the development of electronic commerce. This is targeted at the intersection of technological potential and business aims.