A. Anas Chentouf , Catherine H. Cossaboom , Samuel E. Goldberg , Jack B. Miller
{"title":"Patterns of primes in joint Sato–Tate distributions","authors":"A. Anas Chentouf , Catherine H. Cossaboom , Samuel E. Goldberg , Jack B. Miller","doi":"10.1016/j.jnt.2024.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>, let <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>π</mi><mi>i</mi><mi>n</mi><mi>z</mi></mrow></msup></math></span> be a holomorphic, non-CM cuspidal newform of even weight <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≥</mo><mn>2</mn></math></span> with trivial nebentypus. For each prime <em>p</em>, let <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span> be the angle such that <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>=</mo><mn>2</mn><msup><mrow><mi>p</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup><mi>cos</mi><mo></mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span>. The now-proven Sato–Tate conjecture states that the angles <span><math><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>)</mo></math></span> equidistribute with respect to the measure <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>S</mi><mi>T</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>π</mi></mrow></mfrac><msup><mrow><mi>sin</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mi>θ</mi><mspace></mspace><mi>d</mi><mi>θ</mi></math></span>. We show that, if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is not a character twist of <span><math><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, then for subintervals <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span>, there exist infinitely many bounded gaps between the primes <em>p</em> such that <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>∈</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We also prove a common generalization of the bounded gaps with the Green–Tao theorem.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"263 ","pages":"Pages 297-334"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For , let be a holomorphic, non-CM cuspidal newform of even weight with trivial nebentypus. For each prime p, let be the angle such that . The now-proven Sato–Tate conjecture states that the angles equidistribute with respect to the measure . We show that, if is not a character twist of , then for subintervals , there exist infinitely many bounded gaps between the primes p such that and . We also prove a common generalization of the bounded gaps with the Green–Tao theorem.
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.