Advancing CO2 hydrogenation to formic Acid: DFT insights into Frustrated Lewis Pair−Functionalized UiO−67 catalysts

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Pimjai Pimbaotham , Yuwanda Injongkol , Siriporn Jungsuttiwong , Nuttapon Yodsin
{"title":"Advancing CO2 hydrogenation to formic Acid: DFT insights into Frustrated Lewis Pair−Functionalized UiO−67 catalysts","authors":"Pimjai Pimbaotham ,&nbsp;Yuwanda Injongkol ,&nbsp;Siriporn Jungsuttiwong ,&nbsp;Nuttapon Yodsin","doi":"10.1016/j.jcat.2024.115571","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we explore the potential of metal–organic frameworks (MOFs) as catalysts for converting CO<sub>2</sub> into valuable chemicals. The focus is on integrating frustrated Lewis pairs (FLPs) within the UiO−67 framework. We investigated 12 distinct functionalized FLP moieties (X =  −BF<sub>2</sub>, −BCl<sub>2</sub>, −BBr<sub>2</sub>, −BH<sub>2</sub>, −B(CH<sub>3</sub>)<sub>2</sub>, −B(CF<sub>3</sub>)<sub>2</sub>, −B(CN)<sub>2</sub>, −B(NO<sub>2</sub>)<sub>2</sub>, −B(OH)<sub>2</sub>, −B(NH<sub>2</sub>)<sub>2</sub>, −B(OCH<sub>3</sub>)<sub>2</sub>, and −B(N(CH<sub>3</sub>)<sub>2</sub>)<sub>2</sub> to determine their ability to activate small molecules within heterogeneous catalysis using density functional theory (DFT). This study reveals two critical stages in the CO<sub>2</sub> conversion process with H<sub>2</sub> in UiO−67−X. First, the initial heterolytic cleavage of H<sub>2</sub> at the FLP site, and second, the subsequent hydrogenation of CO<sub>2</sub>. The latter involves the addition of a hydride and a proton. Our findings demonstrate that these modifications facilitate efficient dissociation of H<sub>2</sub> into H<sup>δ−</sup> and H<sup>δ+</sup> with energy barriers ranging from 0.12 to 0.87 eV and CO<sub>2</sub> hydrogenation barriers spanning from 0.61 to 1.90 eV. Notably, the −B(CH<sub>3</sub>)<sub>2</sub> functional group exhibited superior effectiveness in CO<sub>2</sub> hydrogenation to formic acid (HCOOH; FA). This enhanced activity correlates directly with FLP acidity and the Gibbs free energy changes in H<sub>2</sub> dissociation reaction. It highlights the significant influence of FLP−assisted heterolytic dissociation of H<sub>2</sub> in the CO<sub>2</sub> conversion process. The results of this study do more than introduce metal-free heterogeneous FLPs within MOFs. They also establish a clear link between the functional group composition, FLP acidity, and catalytic efficiency. These insights offer a valuable theoretical foundation for the design of advanced UiO−67−X catalysts. They open up possibilities for transforming greenhouse gases into valuable chemical products, contributing to sustainable chemical synthesis.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724002847","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore the potential of metal–organic frameworks (MOFs) as catalysts for converting CO2 into valuable chemicals. The focus is on integrating frustrated Lewis pairs (FLPs) within the UiO−67 framework. We investigated 12 distinct functionalized FLP moieties (X =  −BF2, −BCl2, −BBr2, −BH2, −B(CH3)2, −B(CF3)2, −B(CN)2, −B(NO2)2, −B(OH)2, −B(NH2)2, −B(OCH3)2, and −B(N(CH3)2)2 to determine their ability to activate small molecules within heterogeneous catalysis using density functional theory (DFT). This study reveals two critical stages in the CO2 conversion process with H2 in UiO−67−X. First, the initial heterolytic cleavage of H2 at the FLP site, and second, the subsequent hydrogenation of CO2. The latter involves the addition of a hydride and a proton. Our findings demonstrate that these modifications facilitate efficient dissociation of H2 into Hδ− and Hδ+ with energy barriers ranging from 0.12 to 0.87 eV and CO2 hydrogenation barriers spanning from 0.61 to 1.90 eV. Notably, the −B(CH3)2 functional group exhibited superior effectiveness in CO2 hydrogenation to formic acid (HCOOH; FA). This enhanced activity correlates directly with FLP acidity and the Gibbs free energy changes in H2 dissociation reaction. It highlights the significant influence of FLP−assisted heterolytic dissociation of H2 in the CO2 conversion process. The results of this study do more than introduce metal-free heterogeneous FLPs within MOFs. They also establish a clear link between the functional group composition, FLP acidity, and catalytic efficiency. These insights offer a valuable theoretical foundation for the design of advanced UiO−67−X catalysts. They open up possibilities for transforming greenhouse gases into valuable chemical products, contributing to sustainable chemical synthesis.

Abstract Image

推进二氧化碳加氢制甲酸:对受挫路易斯对官能化 UiO-67 催化剂的 DFT 见解
在本研究中,我们探索了金属有机框架 (MOF) 作为催化剂将二氧化碳转化为有价值化学品的潜力。重点是在 UiO-67 框架内整合失意路易斯对(FLP)。我们研究了 12 个不同的官能化 FLP 分子(X = -BF2、-BCl2、-BBr2、-BH2、-B(CH3)2、-B(CF3)2、-B(CN)2、-B(NO2)2、-B(OH)2、-B(NH2)2、-B(OCH3)2 和 -B(N(CH3)2)2),利用密度泛函理论 (DFT) 确定它们在异相催化中激活小分子的能力。这项研究揭示了 UiO-67-X 中二氧化碳与 H2 转化过程的两个关键阶段。首先,H2 在 FLP 位点的初始异质裂解;其次,CO2 的后续氢化。后者涉及氢化物和质子的添加。我们的研究结果表明,这些修饰有助于将 H2 有效地解离成 Hδ- 和 Hδ+ ,其能量势垒从 0.12 到 0.87 eV 不等,而 CO2 的氢化势垒则从 0.61 到 1.90 eV 不等。值得注意的是,-B(CH3)2 官能团在 CO2 加氢为甲酸(HCOOH;FA)时表现出更高的有效性。这种活性的增强与 FLP 酸度和 H2 离解反应的吉布斯自由能变化直接相关。这凸显了 FLP 在 CO2 转化过程中辅助 H2 异解的重要影响。这项研究的结果不仅在 MOFs 中引入了无金属异质 FLP。它们还在官能团组成、FLP 酸度和催化效率之间建立了明确的联系。这些见解为设计先进的 UiO-67-X 催化剂提供了宝贵的理论基础。它们为将温室气体转化为有价值的化学产品提供了可能性,有助于实现可持续的化学合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信