Accelerated primal-dual methods with adaptive parameters for composite convex optimization with linear constraints

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xin He
{"title":"Accelerated primal-dual methods with adaptive parameters for composite convex optimization with linear constraints","authors":"Xin He","doi":"10.1016/j.apnum.2024.05.021","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce two accelerated primal-dual methods tailored to address linearly constrained composite convex optimization problems, where the objective function is expressed as the sum of a possibly nondifferentiable function and a differentiable function with Lipschitz continuous gradient. The first method is the accelerated linearized augmented Lagrangian method (ALALM), which permits linearization to the differentiable function; the second method is the accelerated linearized proximal point algorithm (ALPPA), which enables linearization of both the differentiable function and the augmented term. By incorporating adaptive parameters, we demonstrate that ALALM achieves the <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> convergence rate and the linear convergence rate under the assumption of convexity and strong convexity, respectively. Additionally, we establish that ALPPA enjoys the <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>)</mo></math></span> convergence rate in convex case and the <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> convergence rate in strongly convex case. We provide numerical results to validate the effectiveness of the proposed methods.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce two accelerated primal-dual methods tailored to address linearly constrained composite convex optimization problems, where the objective function is expressed as the sum of a possibly nondifferentiable function and a differentiable function with Lipschitz continuous gradient. The first method is the accelerated linearized augmented Lagrangian method (ALALM), which permits linearization to the differentiable function; the second method is the accelerated linearized proximal point algorithm (ALPPA), which enables linearization of both the differentiable function and the augmented term. By incorporating adaptive parameters, we demonstrate that ALALM achieves the O(1/k2) convergence rate and the linear convergence rate under the assumption of convexity and strong convexity, respectively. Additionally, we establish that ALPPA enjoys the O(1/k) convergence rate in convex case and the O(1/k2) convergence rate in strongly convex case. We provide numerical results to validate the effectiveness of the proposed methods.

带线性约束的复合凸优化的自适应参数加速原始二元方法
在本文中,我们介绍了两种为解决线性约束复合凸优化问题而量身定制的加速初等二元方法,其中目标函数表示为一个可能的无差异函数与一个具有利普齐兹连续梯度的可差异函数之和。第一种方法是加速线性化增量拉格朗日法(ALALM),允许对可微分函数进行线性化;第二种方法是加速线性化近点算法(ALPPA),允许对可微分函数和增量项进行线性化。通过加入自适应参数,我们证明了 ALALM 在凸性和强凸性假设下分别达到了 O(1/k2) 收敛率和线性收敛率。此外,我们还证明 ALPPA 在凸情况下收敛率为 O(1/k),在强凸情况下收敛率为 O(1/k2)。我们提供了数值结果来验证所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信