Maaike Van Eeckhoutte, Bettina Skjold Jasper, Erik Finn Kjærbøl, David Harbo Jordell, Torsten Dau
{"title":"In-situ Audiometry Compared to Conventional Audiometry for Hearing Aid Fitting.","authors":"Maaike Van Eeckhoutte, Bettina Skjold Jasper, Erik Finn Kjærbøl, David Harbo Jordell, Torsten Dau","doi":"10.1177/23312165241259704","DOIUrl":null,"url":null,"abstract":"<p><p>The use of in-situ audiometry for hearing aid fitting is appealing due to its reduced resource and equipment requirements compared to standard approaches employing conventional audiometry alongside real-ear measures. However, its validity has been a subject of debate, as previous studies noted differences between hearing thresholds measured using conventional and in-situ audiometry. The differences were particularly notable for open-fit hearing aids, attributed to low-frequency leakage caused by the vent. Here, in-situ audiometry was investigated for six receiver-in-canal hearing aids from different manufacturers through three experiments. In Experiment I, the hearing aid gain was measured to investigate whether corrections were implemented to the prescribed target gain. In Experiment II, the in-situ stimuli were recorded to investigate if corrections were directly incorporated to the delivered in-situ stimulus. Finally, in Experiment III, hearing thresholds using in-situ and conventional audiometry were measured with real patients wearing open-fit hearing aids. Results indicated that (1) the hearing aid gain remained unaffected when measured with in-situ or conventional audiometry for all open-fit measurements, (2) the in-situ stimuli were adjusted for up to 30 dB at frequencies below 1000 Hz for all open-fit hearing aids except one, which also recommends the use of closed domes for all in-situ measurements, and (3) the mean interparticipant threshold difference fell within 5 dB for frequencies between 250 and 6000 Hz. The results clearly indicated that modern measured in-situ thresholds align (within 5 dB) with conventional thresholds measured, indicating the potential of in-situ audiometry for remote hearing care.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11155351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165241259704","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of in-situ audiometry for hearing aid fitting is appealing due to its reduced resource and equipment requirements compared to standard approaches employing conventional audiometry alongside real-ear measures. However, its validity has been a subject of debate, as previous studies noted differences between hearing thresholds measured using conventional and in-situ audiometry. The differences were particularly notable for open-fit hearing aids, attributed to low-frequency leakage caused by the vent. Here, in-situ audiometry was investigated for six receiver-in-canal hearing aids from different manufacturers through three experiments. In Experiment I, the hearing aid gain was measured to investigate whether corrections were implemented to the prescribed target gain. In Experiment II, the in-situ stimuli were recorded to investigate if corrections were directly incorporated to the delivered in-situ stimulus. Finally, in Experiment III, hearing thresholds using in-situ and conventional audiometry were measured with real patients wearing open-fit hearing aids. Results indicated that (1) the hearing aid gain remained unaffected when measured with in-situ or conventional audiometry for all open-fit measurements, (2) the in-situ stimuli were adjusted for up to 30 dB at frequencies below 1000 Hz for all open-fit hearing aids except one, which also recommends the use of closed domes for all in-situ measurements, and (3) the mean interparticipant threshold difference fell within 5 dB for frequencies between 250 and 6000 Hz. The results clearly indicated that modern measured in-situ thresholds align (within 5 dB) with conventional thresholds measured, indicating the potential of in-situ audiometry for remote hearing care.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.