{"title":"A Gaussian-plume based Monte Carlo method for calculating radiation dose in the near field of buildings.","authors":"D J Gallacher, A G Robins, P Hayden","doi":"10.1088/1361-6498/ad53d6","DOIUrl":null,"url":null,"abstract":"<p><p>A Monte Carlo (MC) programme was written using the dose point kernel method to calculate doses in the roof zone of a building from nearby releases of radioactive gases. A Gaussian Plume Model (GPM) was parameterised to account for near-field building effects on plume spread and reflection from the roof. Rooftop recirculation zones and building-generated plume spread effects were accounted in a novel Dual Gaussian Plume (DGP) formulation used with the MC model, which allowed for the selection of angle of approach flow, plume release height in relation to the building and position of the release point in relation to the leading edge of the building. Three-dimensional wind tunnel concentration field data were used for the parameterisation. The MC code used the parameterised concentration field to calculate the contributions to effective dose from inhalation, cloud immersion from positron/beta particles, and gamma-ray dose for a wide range of receptor dose positions in the roof zone, including receptor positions at different heights above the roof. Broad trends in predicted radiation dose with angle of approach flow, release position in relation to the building and release height are shown. Alternative approaches for the derivation of the concentration field are discussed.</p>","PeriodicalId":50068,"journal":{"name":"Journal of Radiological Protection","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiological Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1361-6498/ad53d6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A Monte Carlo (MC) programme was written using the dose point kernel method to calculate doses in the roof zone of a building from nearby releases of radioactive gases. A Gaussian Plume Model (GPM) was parameterised to account for near-field building effects on plume spread and reflection from the roof. Rooftop recirculation zones and building-generated plume spread effects were accounted in a novel Dual Gaussian Plume (DGP) formulation used with the MC model, which allowed for the selection of angle of approach flow, plume release height in relation to the building and position of the release point in relation to the leading edge of the building. Three-dimensional wind tunnel concentration field data were used for the parameterisation. The MC code used the parameterised concentration field to calculate the contributions to effective dose from inhalation, cloud immersion from positron/beta particles, and gamma-ray dose for a wide range of receptor dose positions in the roof zone, including receptor positions at different heights above the roof. Broad trends in predicted radiation dose with angle of approach flow, release position in relation to the building and release height are shown. Alternative approaches for the derivation of the concentration field are discussed.
期刊介绍:
Journal of Radiological Protection publishes articles on all aspects of radiological protection, including non-ionising as well as ionising radiations. Fields of interest range from research, development and theory to operational matters, education and training. The very wide spectrum of its topics includes: dosimetry, instrument development, specialized measuring techniques, epidemiology, biological effects (in vivo and in vitro) and risk and environmental impact assessments.
The journal encourages publication of data and code as well as results.