Rania Hamed, Ruwa Z Obeid, Rana Abu Huwaij, Duaa Qattan, Nisreen Abu Shahin
{"title":"Topical gel formulations as potential dermal delivery carriers for green-synthesized zinc oxide nanoparticles.","authors":"Rania Hamed, Ruwa Z Obeid, Rana Abu Huwaij, Duaa Qattan, Nisreen Abu Shahin","doi":"10.1007/s13346-024-01642-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to incorporate green-synthesized zinc oxide nanoparticles (ZnO NPs), functionalized with polyethylene glycol (PEG) and linked to doxorubicin (DOX), into various topical gel formulations (hydrogel, oleogel, and bigel) to enhance their dermal delivery. The ZnO NPs were produced using the aqueous extract of the root hair of Phoenix dactylifera. The optimized green-synthesized ZnO NPs, PEGylated and conjugated to DOX, demonstrated a particle size below 100 nm, low polydispersity index, and zeta potential between - 11 and - 19 mV. The UV-Vis spectroscopy analysis confirmed characteristic absorption peaks at 351 and 545 nm for ZnO and DOX, respectively. The transmission electron microscope (TEM) images revealed well-dispersed spherical nanoparticles without aggregation. Additionally, ZnO NPs-loaded gels exhibited uniformity, cohesion, no phase separation, pseudoplastic flow, and viscoelastic properties. The in vitro release studies showed that DOX-PEG-ZnO NPs hydrogel released 99.5% of DOX after 5 h of starting the release. Moreover, the penetration of DOX-PEG-ZnO NPs through excised rat skin was visualized by TEM. In conclusion, the hydrogel formulation containing green-synthesized DOX-PEG-ZnO NPs holds great promise for dermal administration in skin cancer treatment. Furthermore, the release rate and skin penetration of DOX from gels were varied based on the type of gel matrix and corroborated with their corresponding rheological properties.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"885-907"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01642-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to incorporate green-synthesized zinc oxide nanoparticles (ZnO NPs), functionalized with polyethylene glycol (PEG) and linked to doxorubicin (DOX), into various topical gel formulations (hydrogel, oleogel, and bigel) to enhance their dermal delivery. The ZnO NPs were produced using the aqueous extract of the root hair of Phoenix dactylifera. The optimized green-synthesized ZnO NPs, PEGylated and conjugated to DOX, demonstrated a particle size below 100 nm, low polydispersity index, and zeta potential between - 11 and - 19 mV. The UV-Vis spectroscopy analysis confirmed characteristic absorption peaks at 351 and 545 nm for ZnO and DOX, respectively. The transmission electron microscope (TEM) images revealed well-dispersed spherical nanoparticles without aggregation. Additionally, ZnO NPs-loaded gels exhibited uniformity, cohesion, no phase separation, pseudoplastic flow, and viscoelastic properties. The in vitro release studies showed that DOX-PEG-ZnO NPs hydrogel released 99.5% of DOX after 5 h of starting the release. Moreover, the penetration of DOX-PEG-ZnO NPs through excised rat skin was visualized by TEM. In conclusion, the hydrogel formulation containing green-synthesized DOX-PEG-ZnO NPs holds great promise for dermal administration in skin cancer treatment. Furthermore, the release rate and skin penetration of DOX from gels were varied based on the type of gel matrix and corroborated with their corresponding rheological properties.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.