Charbel Alfeghaly, Gaël Castel, Emmanuel Cazottes, Madeleine Moscatelli, Eva Moinard, Miguel Casanova, Juliette Boni, Kasturi Mahadik, Jenna Lammers, Thomas Freour, Louis Chauviere, Carla Piqueras, Ruben Boers, Joachim Boers, Joost Gribnau, Laurent David, Jean-François Ouimette, Claire Rougeulle
{"title":"XIST dampens X chromosome activity in a SPEN-dependent manner during early human development","authors":"Charbel Alfeghaly, Gaël Castel, Emmanuel Cazottes, Madeleine Moscatelli, Eva Moinard, Miguel Casanova, Juliette Boni, Kasturi Mahadik, Jenna Lammers, Thomas Freour, Louis Chauviere, Carla Piqueras, Ruben Boers, Joachim Boers, Joost Gribnau, Laurent David, Jean-François Ouimette, Claire Rougeulle","doi":"10.1038/s41594-024-01325-3","DOIUrl":null,"url":null,"abstract":"XIST (X-inactive specific transcript) long noncoding RNA (lncRNA) is responsible for X chromosome inactivation (XCI) in placental mammals, yet it accumulates on both X chromosomes in human female preimplantation embryos without triggering X chromosome silencing. The XACT (X-active coating transcript) lncRNA coaccumulates with XIST on active X chromosomes and may antagonize XIST function. Here, we used human embryonic stem cells in a naive state of pluripotency to assess the function of XIST and XACT in shaping the X chromosome chromatin and transcriptional landscapes during preimplantation development. We show that XIST triggers the deposition of polycomb-mediated repressive histone modifications and dampens the transcription of most X-linked genes in a SPEN-dependent manner, while XACT deficiency does not significantly affect XIST activity or X-linked gene expression. Our study demonstrates that XIST is functional before XCI, confirms the existence of a transient process of X chromosome dosage compensation and reveals that XCI and dampening rely on the same set of factors. Using naive human embryonic stem cells as a model for early embryogenesis, the authors report that the XIST (X-inactive specific transcript) long noncoding RNA recruits repressive histone marks and attenuates X chromosome expression before the establishment of X chromosome inactivation.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 10","pages":"1589-1600"},"PeriodicalIF":12.5000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01325-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01325-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
XIST (X-inactive specific transcript) long noncoding RNA (lncRNA) is responsible for X chromosome inactivation (XCI) in placental mammals, yet it accumulates on both X chromosomes in human female preimplantation embryos without triggering X chromosome silencing. The XACT (X-active coating transcript) lncRNA coaccumulates with XIST on active X chromosomes and may antagonize XIST function. Here, we used human embryonic stem cells in a naive state of pluripotency to assess the function of XIST and XACT in shaping the X chromosome chromatin and transcriptional landscapes during preimplantation development. We show that XIST triggers the deposition of polycomb-mediated repressive histone modifications and dampens the transcription of most X-linked genes in a SPEN-dependent manner, while XACT deficiency does not significantly affect XIST activity or X-linked gene expression. Our study demonstrates that XIST is functional before XCI, confirms the existence of a transient process of X chromosome dosage compensation and reveals that XCI and dampening rely on the same set of factors. Using naive human embryonic stem cells as a model for early embryogenesis, the authors report that the XIST (X-inactive specific transcript) long noncoding RNA recruits repressive histone marks and attenuates X chromosome expression before the establishment of X chromosome inactivation.
XIST(X-inactive specific transcript)长非编码 RNA(lncRNA)在胎盘哺乳动物中负责 X 染色体失活(XCI),但它会在人类女性植入前胚胎的两条 X 染色体上积累,而不会引发 X 染色体沉默。XACT(X-活性包被转录本)lncRNA与XIST共同聚集在活性X染色体上,可能会拮抗XIST的功能。在这里,我们利用处于幼稚多能状态的人类胚胎干细胞,评估了XIST和XACT在植入前发育过程中塑造X染色体染色质和转录景观的功能。我们的研究表明,XIST 会触发多聚酶介导的抑制性组蛋白修饰沉积,并以一种依赖 SPEN 的方式抑制大多数 X 连锁基因的转录,而 XACT 的缺乏并不会显著影响 XIST 的活性或 X 连锁基因的表达。我们的研究表明,XIST 在 XCI 之前就已发挥作用,证实了 X 染色体剂量补偿过程的存在,并揭示了 XCI 和抑制作用依赖于同一组因子。
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.