Isaac Marin-Valencia, Arif Kocabas, Carlos Rodriguez-Navas, Vesselin Z. Miloushev, Manuel González-Rodríguez, Hannah Lees, Kelly E. Henry, Jake Vaynshteyn, Valerie Longo, Kofi Deh, Roozbeh Eskandari, Arsen Mamakhanyan, Marjan Berishaj, Kayvan R. Keshari
{"title":"Imaging brain glucose metabolism in vivo reveals propionate as a major anaplerotic substrate in pyruvate dehydrogenase deficiency","authors":"Isaac Marin-Valencia, Arif Kocabas, Carlos Rodriguez-Navas, Vesselin Z. Miloushev, Manuel González-Rodríguez, Hannah Lees, Kelly E. Henry, Jake Vaynshteyn, Valerie Longo, Kofi Deh, Roozbeh Eskandari, Arsen Mamakhanyan, Marjan Berishaj, Kayvan R. Keshari","doi":"10.1016/j.cmet.2024.05.002","DOIUrl":null,"url":null,"abstract":"<p>A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease <em>in vivo</em>. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, <em>in vivo</em> brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain—it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.</p>","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":null,"pages":null},"PeriodicalIF":27.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.05.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain—it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.