An Efficient Anomaly Detection Method for Industrial Control Systems: Deep Convolutional Autoencoding Transformer Network

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenli Shang, Jiawei Qiu, Haotian Shi, Shuang Wang, Lei Ding, Yanjun Xiao
{"title":"An Efficient Anomaly Detection Method for Industrial Control Systems: Deep Convolutional Autoencoding Transformer Network","authors":"Wenli Shang,&nbsp;Jiawei Qiu,&nbsp;Haotian Shi,&nbsp;Shuang Wang,&nbsp;Lei Ding,&nbsp;Yanjun Xiao","doi":"10.1155/2024/5459452","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Industrial control systems (ICSs), as critical national infrastructures, are increasingly susceptible to sophisticated security threats. To address this challenge, our study introduces the CAE-T, a deep convolutional autoencoding transformer network designed for efficient anomaly detection and real-time fault monitoring in ICS. The CAE-T utilizes unsupervised deep learning, employing a convolutional autoencoder for spatial feature extraction from multidimensional time-series data, and combines this with a transformer architecture to capture long-term temporal dependencies. The design of the model facilitates rapid training and inference, while its dual-component approach, utilizing an optimization function based on support vector data description (SVDD), enhances detection accuracy. This integration synergistically combines spatiotemporal feature extraction, significantly improving the robustness and precision of anomaly detection in ICS environments. The CAE-T model demonstrated notable performance enhancements across three industrial control system datasets. Notably, the CAE-T model achieved approximately a 70.8% increase in <i>F</i>1 score and a 9.2% rise in AUC on the WADI dataset. On the SWaT dataset, the model showed improvements of approximately 2.8% in <i>F</i>1 score and 5% in AUC. The power system dataset saw more modest gains, with an approximately 0.1% uptick in <i>F</i>1 score and a 1% increase in AUC. These improvements validate the CAE-T model’s efficacy and robustness in anomaly detection across various scenarios.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5459452","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5459452","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial control systems (ICSs), as critical national infrastructures, are increasingly susceptible to sophisticated security threats. To address this challenge, our study introduces the CAE-T, a deep convolutional autoencoding transformer network designed for efficient anomaly detection and real-time fault monitoring in ICS. The CAE-T utilizes unsupervised deep learning, employing a convolutional autoencoder for spatial feature extraction from multidimensional time-series data, and combines this with a transformer architecture to capture long-term temporal dependencies. The design of the model facilitates rapid training and inference, while its dual-component approach, utilizing an optimization function based on support vector data description (SVDD), enhances detection accuracy. This integration synergistically combines spatiotemporal feature extraction, significantly improving the robustness and precision of anomaly detection in ICS environments. The CAE-T model demonstrated notable performance enhancements across three industrial control system datasets. Notably, the CAE-T model achieved approximately a 70.8% increase in F1 score and a 9.2% rise in AUC on the WADI dataset. On the SWaT dataset, the model showed improvements of approximately 2.8% in F1 score and 5% in AUC. The power system dataset saw more modest gains, with an approximately 0.1% uptick in F1 score and a 1% increase in AUC. These improvements validate the CAE-T model’s efficacy and robustness in anomaly detection across various scenarios.

Abstract Image

工业控制系统的高效异常检测方法:深度卷积自动编码变压器网络
工业控制系统(ICS)作为重要的国家基础设施,越来越容易受到复杂的安全威胁。为了应对这一挑战,我们的研究引入了 CAE-T,这是一种深度卷积自动编码变压器网络,设计用于 ICS 的高效异常检测和实时故障监控。CAE-T 采用无监督深度学习,利用卷积自动编码器从多维时间序列数据中提取空间特征,并将其与变压器架构相结合,以捕捉长期时间依赖性。该模型的设计有利于快速训练和推理,而其双组件方法利用基于支持向量数据描述(SVDD)的优化函数,提高了检测精度。这种集成协同结合了时空特征提取,显著提高了 ICS 环境中异常检测的鲁棒性和精确性。CAE-T 模型在三个工业控制系统数据集上显示出显著的性能提升。值得注意的是,在 WADI 数据集上,CAE-T 模型的 F1 分数提高了约 70.8%,AUC 提高了 9.2%。在 SWaT 数据集上,该模型的 F1 分数提高了约 2.8%,AUC 提高了 5%。电力系统数据集的改进幅度较小,F1 分数提高了约 0.1%,AUC 提高了 1%。这些改进验证了 CAE-T 模型在各种场景下进行异常检测的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信