{"title":"Method for Network-Anomaly Detection and Failure-Scale Estimation","authors":"Naoya Ogawa;Ryoichi Kawahara","doi":"10.23919/comex.2024XBL0028","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 6","pages":"206-209"},"PeriodicalIF":0.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494939","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494939/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.