Machine Learning-Based Area Estimation Using Data Measured Under Walking Conditions

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Shota Nakayama;Satoru Aikawa;Shinichiro Yamamoto
{"title":"Machine Learning-Based Area Estimation Using Data Measured Under Walking Conditions","authors":"Shota Nakayama;Satoru Aikawa;Shinichiro Yamamoto","doi":"10.23919/comex.2024SPL0012","DOIUrl":null,"url":null,"abstract":"This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 6","pages":"172-175"},"PeriodicalIF":0.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471244","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10471244/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.
利用步行条件下的测量数据进行基于机器学习的面积估算
本研究探讨了使用无线局域网进行房间级室内面积估算的准确性和测量成本。指纹识别法是一种将用户测量的接入点(AP)信息与服务提供商提供的已有接入点数据进行比较的方法,本研究利用指纹识别法引入了一种具有成本效益的方法。我们提出的基于机器学习(ML)的方法利用了用户在区域内不同地点穿越时收集的数据,从而大大缩短了测量时间。此外,本研究还对比了卷积神经网络(CNN)和支持向量机(SVM)在使用这种新型测量技术进行区域估算方面的有效性。卷积神经网络和支持向量机的精确度相当,而支持向量机的处理时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信