Proposal on Rain Attenuation Prediction Method Using Convolutional Neural Network

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuji Komatsuya;Tetsuro Imai;Miyuki Hirose
{"title":"Proposal on Rain Attenuation Prediction Method Using Convolutional Neural Network","authors":"Yuji Komatsuya;Tetsuro Imai;Miyuki Hirose","doi":"10.23919/comex.2024SPL0015","DOIUrl":null,"url":null,"abstract":"Recently, the practical application of HAPS (High Altitude Platform Station) as the next-generation communication platform is studied actively. HAPS employs adaptive rain attenuation countermeasure techniques such as site diversity methods, therefore it is ideal to predict rain attenuation on the path in real time. We proposed real-time rain attenuation prediction method by convolutional neural network that inputs image of rainfall rate and path distance. Result showed that prediction accuracy of our proposed method is better than a method using conventional formulas.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 6","pages":"181-184"},"PeriodicalIF":0.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471242","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10471242/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the practical application of HAPS (High Altitude Platform Station) as the next-generation communication platform is studied actively. HAPS employs adaptive rain attenuation countermeasure techniques such as site diversity methods, therefore it is ideal to predict rain attenuation on the path in real time. We proposed real-time rain attenuation prediction method by convolutional neural network that inputs image of rainfall rate and path distance. Result showed that prediction accuracy of our proposed method is better than a method using conventional formulas.
关于利用卷积神经网络进行雨衰减预测方法的建议
最近,作为下一代通信平台的 HAPS(高空平台站)的实际应用得到了积极研究。HAPS 采用站点分集法等自适应雨衰减对策技术,因此实时预测路径上的雨衰减是最理想的方法。我们利用卷积神经网络输入降雨率图像和路径距离,提出了实时雨衰减预测方法。结果表明,我们提出的方法的预测精度优于使用传统公式的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信