Oxygen vacancy-dependent humidity sensing performance induced by Si doping on SnO2 nanoparticles

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Yuchuan Ding , Yong Chen , MaoHua Wang
{"title":"Oxygen vacancy-dependent humidity sensing performance induced by Si doping on SnO2 nanoparticles","authors":"Yuchuan Ding ,&nbsp;Yong Chen ,&nbsp;MaoHua Wang","doi":"10.1016/j.micrna.2024.207890","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we investigated the effects of Si doping on the oxygen vacancy defects in SnO<sub>2</sub> nanoparticles for detecting changes in humidity levels. XRD measurements showed that all samples exhibit tetragonal rutile phase and the crystallite structure of SnO<sub>2</sub> was tuned with Si content increasing. XPS analysis revealed more oxygen vacancies defects (the percentage of O<sub>V</sub> increases from 11.52 % to 19.02 %) were confirmed to be produced, accelerating chemisorption of water molecules on Si doped SnO<sub>2</sub> surface. Additionally, we discussed the various situations involving the utilization of electrons and holes corresponding to the different states of oxygen vacancies via photoluminescence spectroscopy. The humidity sensing results exhibited that the 5 mol% Si doped SnO<sub>2</sub> humidity sensor shows high sensitivity, low hysteresis (5.7 %) and fast response/recovery times (7 s/10 s) range from 11 % to 95 % relative humidity. The chemical mechanisms for enhancement in humidity performance induced by oxygen vacancy defects formed on SnO<sub>2</sub> surface is proposed.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigated the effects of Si doping on the oxygen vacancy defects in SnO2 nanoparticles for detecting changes in humidity levels. XRD measurements showed that all samples exhibit tetragonal rutile phase and the crystallite structure of SnO2 was tuned with Si content increasing. XPS analysis revealed more oxygen vacancies defects (the percentage of OV increases from 11.52 % to 19.02 %) were confirmed to be produced, accelerating chemisorption of water molecules on Si doped SnO2 surface. Additionally, we discussed the various situations involving the utilization of electrons and holes corresponding to the different states of oxygen vacancies via photoluminescence spectroscopy. The humidity sensing results exhibited that the 5 mol% Si doped SnO2 humidity sensor shows high sensitivity, low hysteresis (5.7 %) and fast response/recovery times (7 s/10 s) range from 11 % to 95 % relative humidity. The chemical mechanisms for enhancement in humidity performance induced by oxygen vacancy defects formed on SnO2 surface is proposed.

二氧化锡纳米颗粒掺杂硅诱导的氧空位湿度传感性能
在这项工作中,我们研究了掺硅对二氧化锡纳米粒子中氧空位缺陷的影响,以检测湿度的变化。XRD 测量结果表明,所有样品都呈现出四方金红石相,二氧化锡的晶粒结构随硅含量的增加而调整。XPS 分析表明,更多的氧空位缺陷(OV 百分比从 11.52% 增加到 19.02%)被证实产生,从而加速了掺硅二氧化锡表面水分子的化学吸附。此外,我们还通过光致发光光谱讨论了不同状态氧空位对应的电子和空穴利用的各种情况。湿度传感结果表明,掺杂了 5 摩尔% Si 的二氧化锡湿度传感器在相对湿度为 11% 至 95% 的范围内表现出高灵敏度、低滞后(5.7%)和快速响应/恢复时间(7 秒/10 秒)。提出了二氧化锡表面形成的氧空位缺陷诱导湿度性能增强的化学机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信