The burning number conjecture holds asymptotically

IF 1.2 1区 数学 Q1 MATHEMATICS
Sergey Norin, Jérémie Turcotte
{"title":"The burning number conjecture holds asymptotically","authors":"Sergey Norin,&nbsp;Jérémie Turcotte","doi":"10.1016/j.jctb.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>The burning number <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a graph <em>G</em> is the smallest number of turns required to burn all vertices of a graph if at every turn a new fire is started and existing fires spread to all adjacent vertices. The Burning Number Conjecture of Bonato et al. (2016) postulates that <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mrow><mo>⌈</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>⌉</mo></mrow></math></span> for all connected graphs <em>G</em> on <em>n</em> vertices. We prove that this conjecture holds asymptotically, that is <span><math><mi>b</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span>.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"168 ","pages":"Pages 208-235"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562400042X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The burning number b(G) of a graph G is the smallest number of turns required to burn all vertices of a graph if at every turn a new fire is started and existing fires spread to all adjacent vertices. The Burning Number Conjecture of Bonato et al. (2016) postulates that b(G)n for all connected graphs G on n vertices. We prove that this conjecture holds asymptotically, that is b(G)(1+o(1))n.

燃烧数猜想近似成立
图 G 的燃烧数 b(G)是指如果每转一圈都有新的火开始燃烧,并且已有的火蔓延到所有相邻的顶点,则烧毁图中所有顶点所需的最小圈数。Bonato 等人(2016 年)提出的燃烧次数猜想假设,对于 n 个顶点上的所有连通图 G,b(G)≤⌈n⌉。我们证明这一猜想近似成立,即 b(G)≤(1+o(1))n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信