Development of a novel cable-driven parallel robot for full-cycle ankle rehabilitation

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Ye Huo , Muhammad Niaz Khan , Zhu Feng Shao , Yu Pan
{"title":"Development of a novel cable-driven parallel robot for full-cycle ankle rehabilitation","authors":"Ye Huo ,&nbsp;Muhammad Niaz Khan ,&nbsp;Zhu Feng Shao ,&nbsp;Yu Pan","doi":"10.1016/j.mechatronics.2024.103210","DOIUrl":null,"url":null,"abstract":"<div><p>Automatic rehabilitation equipment provides timely and effective rehabilitation training, which is critical in accelerating the recovery of joint injury and motion function. This paper proposes a novel cable-driven parallel robot for full-cycle ankle rehabilitation considering large angle, considerable moment, and multi-degree of freedom coupling. The configuration design, dimension optimization, control strategy, and prototype development are completed. By adopting rigid branch and cross cables, noticeable rotation angle and moment are achieved with a simple and lightweight configuration. Optimal design is implemented based on the grid search with the balance between the maximum cable force and the robot size. The control strategy that meets multiple training modes is developed, covering the entire rehabilitation cycle. Finally, the prototype is implemented to verify the research validity and provides high-performance rehabilitation equipment for the ankle joint.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"101 ","pages":"Article 103210"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000758","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic rehabilitation equipment provides timely and effective rehabilitation training, which is critical in accelerating the recovery of joint injury and motion function. This paper proposes a novel cable-driven parallel robot for full-cycle ankle rehabilitation considering large angle, considerable moment, and multi-degree of freedom coupling. The configuration design, dimension optimization, control strategy, and prototype development are completed. By adopting rigid branch and cross cables, noticeable rotation angle and moment are achieved with a simple and lightweight configuration. Optimal design is implemented based on the grid search with the balance between the maximum cable force and the robot size. The control strategy that meets multiple training modes is developed, covering the entire rehabilitation cycle. Finally, the prototype is implemented to verify the research validity and provides high-performance rehabilitation equipment for the ankle joint.

开发用于全周期踝关节康复的新型电缆驱动并联机器人
自动康复设备可提供及时有效的康复训练,对加速关节损伤和运动功能的恢复至关重要。考虑到大角度、大力矩和多自由度耦合,本文提出了一种用于全周期踝关节康复的新型缆索驱动并联机器人。完成了配置设计、尺寸优化、控制策略和原型开发。通过采用刚性支索和横索,以简单轻便的配置实现了显著的旋转角度和力矩。在平衡最大缆力和机器人尺寸的基础上,通过网格搜索实现了优化设计。开发了满足多种训练模式的控制策略,涵盖了整个康复周期。最后,实施原型验证了研究的有效性,并为踝关节提供了高性能的康复设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信