Semigroup well-posedness and exponential stability for the von Kármán beam equation under the combined boundary control of nonlinear delays and non-delays

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi Cheng , Xin Wang , Baowei Feng , Donal O’ Regan
{"title":"Semigroup well-posedness and exponential stability for the von Kármán beam equation under the combined boundary control of nonlinear delays and non-delays","authors":"Yi Cheng ,&nbsp;Xin Wang ,&nbsp;Baowei Feng ,&nbsp;Donal O’ Regan","doi":"10.1016/j.nonrwa.2024.104143","DOIUrl":null,"url":null,"abstract":"<div><p>This paper considers the stabilization problem of the von Kármán beam equation with a combined boundary control of nonlinear delays and nonlinear non-delays. The combined boundary controls are applied at the transverse and longitudinal boundaries of the von Kármán beam, respectively. In this paper the nonlinear semigroup method is adopted in the investigation for the establishment of the well-posedness of the resulting closed-loop system. Constructing an appropriate energy-like function, the exponential decay rate of energy of the closed-loop system is demonstrated by a generalized Gronwall-type integral inequality and the integral multiplier technique.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182400083X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the stabilization problem of the von Kármán beam equation with a combined boundary control of nonlinear delays and nonlinear non-delays. The combined boundary controls are applied at the transverse and longitudinal boundaries of the von Kármán beam, respectively. In this paper the nonlinear semigroup method is adopted in the investigation for the establishment of the well-posedness of the resulting closed-loop system. Constructing an appropriate energy-like function, the exponential decay rate of energy of the closed-loop system is demonstrated by a generalized Gronwall-type integral inequality and the integral multiplier technique.

非线性延迟和非延迟联合边界控制下 von Kármán 梁方程的半群好求和指数稳定性
本文研究了具有非线性延迟和非线性非延迟组合边界控制的 von Kármán 梁方程的稳定问题。组合边界控制分别应用于 von Kármán 梁的横向和纵向边界。本文在研究中采用了非线性半群法,以建立闭环系统的良好拟合。通过构造一个适当的类能量函数,利用广义格伦沃尔积分不等式和积分乘法器技术证明了闭环系统能量的指数衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信