Rong Wang, Zhenfei Song, Deqiang Wei, Xinkai Li, Jinjie Song, Zhenzhao Mo, Yitao Weng, Fengtao Yang
{"title":"Unveiling the effect of electron beam shock on the microstructure and wear resistance of Cr12MoV steel","authors":"Rong Wang, Zhenfei Song, Deqiang Wei, Xinkai Li, Jinjie Song, Zhenzhao Mo, Yitao Weng, Fengtao Yang","doi":"10.1016/j.vacuum.2024.113347","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing wear resistance is the core factor that prolonged the life of the Cr12MoV mold and elevates the quality of the components produced. Hence, Cr12MoV mold steel was shocked by scanning electron beam (SEB) to improve wear resistance. Results revealed that the segregation eutectic carbides in the surface structure of Cr12MoV steel were dissolved during the shock process of various beam electron beams, and the small particles of carbides produced are helpful in reducing wear. With an energy density of 20 J/mm<sup>2</sup>, surface roughness of Cr12MoV steel decreases from 2.9 μm to 1.2 μm, the friction coefficient decreases from 0.85 to 0.52. Additionally, the wear capacity also decreases from 0.036 mm<sup>3</sup> to 0.011 mm<sup>3</sup>, and surface wear resistance increases by over 3 times. Grain refinement-induced surface hardening is the primary cause underlying performance improvement. This study provides ideas for improving the surface quality of Cr12MoV steel.</p></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"226 ","pages":"Article 113347"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24003932","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing wear resistance is the core factor that prolonged the life of the Cr12MoV mold and elevates the quality of the components produced. Hence, Cr12MoV mold steel was shocked by scanning electron beam (SEB) to improve wear resistance. Results revealed that the segregation eutectic carbides in the surface structure of Cr12MoV steel were dissolved during the shock process of various beam electron beams, and the small particles of carbides produced are helpful in reducing wear. With an energy density of 20 J/mm2, surface roughness of Cr12MoV steel decreases from 2.9 μm to 1.2 μm, the friction coefficient decreases from 0.85 to 0.52. Additionally, the wear capacity also decreases from 0.036 mm3 to 0.011 mm3, and surface wear resistance increases by over 3 times. Grain refinement-induced surface hardening is the primary cause underlying performance improvement. This study provides ideas for improving the surface quality of Cr12MoV steel.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.