{"title":"A low voltage input boost converter with novel switch driver enhancement technology for indoor solar energy harvesting","authors":"Xiwen Zhu, Kaixuan Xu, Mingxue Li, Yufeng Zhang","doi":"10.1016/j.vlsi.2024.102214","DOIUrl":null,"url":null,"abstract":"<div><p>In the indoor environment, the output voltage of a small photovoltaic cell is usually too low to charge the battery or utilize it directly. As a result, this paper proposed a low-voltage input boost converter with novel switch driver enhancement technology for indoor solar energy harvesting. The boost converter utilized switched-capacitor charge pump architecture. Compared with conventional charge pumps, the proposed boost converter uses driver enhancement technology, which improves the output current ability of the circuit and power conversion efficiency. Besides, an adaptive dead-time circuit is designed to further optimize conversion efficiency at low input voltage. The integrated circuit (IC) of the boost converter has been manufactured in a 180 nm BCD process and occupies an active chip area of 1.6mm × 0.6 mm. Experimental measurement results confirm that the voltage boost converter increased the input voltage by four times. And the lowest start-up voltage is 0.12 V. The voltage conversion efficiency is 98 % and the highest power conversion efficiency is 76.7 % at Vin of 0.5 V. The design is suitable for indoor solar energy harvesting.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"98 ","pages":"Article 102214"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024000786","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In the indoor environment, the output voltage of a small photovoltaic cell is usually too low to charge the battery or utilize it directly. As a result, this paper proposed a low-voltage input boost converter with novel switch driver enhancement technology for indoor solar energy harvesting. The boost converter utilized switched-capacitor charge pump architecture. Compared with conventional charge pumps, the proposed boost converter uses driver enhancement technology, which improves the output current ability of the circuit and power conversion efficiency. Besides, an adaptive dead-time circuit is designed to further optimize conversion efficiency at low input voltage. The integrated circuit (IC) of the boost converter has been manufactured in a 180 nm BCD process and occupies an active chip area of 1.6mm × 0.6 mm. Experimental measurement results confirm that the voltage boost converter increased the input voltage by four times. And the lowest start-up voltage is 0.12 V. The voltage conversion efficiency is 98 % and the highest power conversion efficiency is 76.7 % at Vin of 0.5 V. The design is suitable for indoor solar energy harvesting.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.