{"title":"13C-metabolic flux analysis reveals metabolic rewiring in HL-60 neutrophil-like cells through differentiation and immune stimulation","authors":"Takeo Taniguchi , Nobuyuki Okahashi , Fumio Matsuda","doi":"10.1016/j.mec.2024.e00239","DOIUrl":null,"url":null,"abstract":"<div><p>Neutrophils are innate immune cells and the first line of defense for the maintenance of homeostasis. However, our knowledge of the metabolic rewiring associated with their differentiation and immune stimulation is limited. Here, quantitative <sup>13</sup>C-metabolic flux analysis was performed using HL-60 cells as the neutrophil model. A metabolic model for <sup>13</sup>C-metabolic flux analysis of neutrophils was developed based on the accumulation of <sup>13</sup>C in intracellular metabolites derived from <sup>13</sup>C-labeled extracellular carbon sources and intracellular macromolecules. Aspartate and glutamate in the medium were identified as carbon sources that enter central carbon metabolism. Furthermore, the breakdown of macromolecules, estimated to be fatty acids and nucleic acids, was observed. Based on these results, a modified metabolic model was used for <sup>13</sup>C-metabolic flux analysis of undifferentiated, differentiated, and lipopolysaccharide (LPS)-activated HL-60 cells. The glucose uptake rate and glycolytic flux decreased with differentiation, whereas the tricarboxylic acid (TCA) cycle flux remained constant. The addition of LPS to differentiated HL-60 cells activated the glucose uptake rate and pentose phosphate pathway (PPP) flux levels, resulting in an increased rate of total NADPH regeneration, which could be used to generate reactive oxygen species. The flux levels of fatty acid degradation and synthesis were also increased in LPS-activated HL-60 cells. Overall, this study highlights the quantitative metabolic alterations in multiple pathways via the differentiation and activation of HL-60 cells using <sup>13</sup>C-metabolic flux analysis.</p></div>","PeriodicalId":18695,"journal":{"name":"Metabolic Engineering Communications","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214030124000087/pdfft?md5=9e66b20619ea8e938872df783c3173fb&pid=1-s2.0-S2214030124000087-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic Engineering Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214030124000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neutrophils are innate immune cells and the first line of defense for the maintenance of homeostasis. However, our knowledge of the metabolic rewiring associated with their differentiation and immune stimulation is limited. Here, quantitative 13C-metabolic flux analysis was performed using HL-60 cells as the neutrophil model. A metabolic model for 13C-metabolic flux analysis of neutrophils was developed based on the accumulation of 13C in intracellular metabolites derived from 13C-labeled extracellular carbon sources and intracellular macromolecules. Aspartate and glutamate in the medium were identified as carbon sources that enter central carbon metabolism. Furthermore, the breakdown of macromolecules, estimated to be fatty acids and nucleic acids, was observed. Based on these results, a modified metabolic model was used for 13C-metabolic flux analysis of undifferentiated, differentiated, and lipopolysaccharide (LPS)-activated HL-60 cells. The glucose uptake rate and glycolytic flux decreased with differentiation, whereas the tricarboxylic acid (TCA) cycle flux remained constant. The addition of LPS to differentiated HL-60 cells activated the glucose uptake rate and pentose phosphate pathway (PPP) flux levels, resulting in an increased rate of total NADPH regeneration, which could be used to generate reactive oxygen species. The flux levels of fatty acid degradation and synthesis were also increased in LPS-activated HL-60 cells. Overall, this study highlights the quantitative metabolic alterations in multiple pathways via the differentiation and activation of HL-60 cells using 13C-metabolic flux analysis.
期刊介绍:
Metabolic Engineering Communications, a companion title to Metabolic Engineering (MBE), is devoted to publishing original research in the areas of metabolic engineering, synthetic biology, computational biology and systems biology for problems related to metabolism and the engineering of metabolism for the production of fuels, chemicals, and pharmaceuticals. The journal will carry articles on the design, construction, and analysis of biological systems ranging from pathway components to biological complexes and genomes (including genomic, analytical and bioinformatics methods) in suitable host cells to allow them to produce novel compounds of industrial and medical interest. Demonstrations of regulatory designs and synthetic circuits that alter the performance of biochemical pathways and cellular processes will also be presented. Metabolic Engineering Communications complements MBE by publishing articles that are either shorter than those published in the full journal, or which describe key elements of larger metabolic engineering efforts.