Enhancing tourism demand forecasting with a transformer-based framework

IF 10.4 1区 管理学 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM
Xin Li , Yechi Xu , Rob Law , Shouyang Wang
{"title":"Enhancing tourism demand forecasting with a transformer-based framework","authors":"Xin Li ,&nbsp;Yechi Xu ,&nbsp;Rob Law ,&nbsp;Shouyang Wang","doi":"10.1016/j.annals.2024.103791","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an innovative framework that harnesses the most recent transformer architecture to enhance tourism demand forecasting. The proposed transformer-based model integrates the tree-structured parzen estimator for hyperparameter optimization, a robust time series decomposition approach, and a temporal fusion transformer for multivariate time series prediction. Our novel approach initially employs the decomposition method to decompose the data series to effectively mitigate the influence of outliers. The temporal fusion transformer is subsequently utilized for forecasting, and its hyperparameters are meticulously fine-tuned by a Bayesian-based algorithm, culminating in a more efficient and precise model for tourism demand forecasting. Our model surpasses existing state-of-the-art methodologies in terms of forecasting accuracy and robustness.</p></div>","PeriodicalId":48452,"journal":{"name":"Annals of Tourism Research","volume":"107 ","pages":"Article 103791"},"PeriodicalIF":10.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Tourism Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160738324000689","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an innovative framework that harnesses the most recent transformer architecture to enhance tourism demand forecasting. The proposed transformer-based model integrates the tree-structured parzen estimator for hyperparameter optimization, a robust time series decomposition approach, and a temporal fusion transformer for multivariate time series prediction. Our novel approach initially employs the decomposition method to decompose the data series to effectively mitigate the influence of outliers. The temporal fusion transformer is subsequently utilized for forecasting, and its hyperparameters are meticulously fine-tuned by a Bayesian-based algorithm, culminating in a more efficient and precise model for tourism demand forecasting. Our model surpasses existing state-of-the-art methodologies in terms of forecasting accuracy and robustness.

Abstract Image

利用基于转换器的框架加强旅游需求预测
本研究引入了一个创新框架,利用最新的转换器架构来加强旅游需求预测。所提出的基于转换器的模型集成了用于超参数优化的树状结构帕尔森估计器、稳健的时间序列分解方法以及用于多变量时间序列预测的时间融合转换器。我们的新方法首先采用分解法对数据序列进行分解,以有效减轻异常值的影响。随后利用时间融合转换器进行预测,并通过基于贝叶斯的算法对其超参数进行细致的微调,最终形成一个更高效、更精确的旅游需求预测模型。我们的模型在预测准确性和稳健性方面超越了现有的先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.10
自引率
9.10%
发文量
135
审稿时长
42 days
期刊介绍: The Annals of Tourism Research is a scholarly journal that focuses on academic perspectives related to tourism. The journal defines tourism as a global economic activity that involves travel behavior, management and marketing activities of service industries catering to consumer demand, the effects of tourism on communities, and policy and governance at local, national, and international levels. While the journal aims to strike a balance between theory and application, its primary focus is on developing theoretical constructs that bridge the gap between business and the social and behavioral sciences. The disciplinary areas covered in the journal include, but are not limited to, service industries management, marketing science, consumer marketing, decision-making and behavior, business ethics, economics and forecasting, environment, geography and development, education and knowledge development, political science and administration, consumer-focused psychology, and anthropology and sociology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信