Qihang Yang , Caiyan Qin , Ning Chen , Haotuo Liu , Bin Zhang , Xiaohu Wu
{"title":"ZrC–Au core-shell nanoparticles for efficient solar photothermal conversion","authors":"Qihang Yang , Caiyan Qin , Ning Chen , Haotuo Liu , Bin Zhang , Xiaohu Wu","doi":"10.1016/j.ijthermalsci.2024.109175","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoparticles (NPs) have attracted much attention recently because of their excellent photothermal properties. In particular, nanofluids (NFs) based on core-shell plasmon NPs have become the key to solar thermal utilization. This work proposed an ZrC–Au core-shell NP suitable for direct absorption solar collectors (DASCs). The optical properties of ZrC–Au core-shell NP are investigated based on the finite element method (FEM). The physical mechanism of its existence can be explained by the surface plasmon resonance and localized surface plasmon resonance of ZrC–Au core-shell NP. Meanwhile, the effect of core-shell size on the NP optical properties of ZrC–Au core-shell is investigated based on electromagnetic field distribution. In addition, the effects of length (<em>H</em>) and mass flow (<em>ṁ</em>) on the temperature rise and efficiency of the collector (<em>η</em>) are analyzed with DASC 2D simulation. Research shows that ZrC–Au core-shell NPs with <em>t</em> = 5 nm and <em>r</em><sub>3</sub> = 15 nm can effectively broaden the solar spectral absorption band, increase the absorption peak value, and the photothermal conversion efficiency (<em>f</em><sub>v</sub> = 20 ppm, <em>h</em> = 15 mm) reaches 96 %, which is 15.89 % higher than Au NP. Meanwhile, the <em>η</em> of ZrC–Au NPs can be improved by ∼8.86 % compared with Au NPs under specific parameters (<em>H</em> = 2 cm, <em>L</em> = 20 cm, <em>f</em><sub>v</sub> = 20 ppm, <em>ṁ</em> = 1 g/(s m)). Combined with the preparation possibility and economy of ZrC–Au core-shell NPs, the broad application prospect of this NP in DASC and other photothermal fields was analyzed.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924002977","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles (NPs) have attracted much attention recently because of their excellent photothermal properties. In particular, nanofluids (NFs) based on core-shell plasmon NPs have become the key to solar thermal utilization. This work proposed an ZrC–Au core-shell NP suitable for direct absorption solar collectors (DASCs). The optical properties of ZrC–Au core-shell NP are investigated based on the finite element method (FEM). The physical mechanism of its existence can be explained by the surface plasmon resonance and localized surface plasmon resonance of ZrC–Au core-shell NP. Meanwhile, the effect of core-shell size on the NP optical properties of ZrC–Au core-shell is investigated based on electromagnetic field distribution. In addition, the effects of length (H) and mass flow (ṁ) on the temperature rise and efficiency of the collector (η) are analyzed with DASC 2D simulation. Research shows that ZrC–Au core-shell NPs with t = 5 nm and r3 = 15 nm can effectively broaden the solar spectral absorption band, increase the absorption peak value, and the photothermal conversion efficiency (fv = 20 ppm, h = 15 mm) reaches 96 %, which is 15.89 % higher than Au NP. Meanwhile, the η of ZrC–Au NPs can be improved by ∼8.86 % compared with Au NPs under specific parameters (H = 2 cm, L = 20 cm, fv = 20 ppm, ṁ = 1 g/(s m)). Combined with the preparation possibility and economy of ZrC–Au core-shell NPs, the broad application prospect of this NP in DASC and other photothermal fields was analyzed.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.