The repetition threshold of episturmian sequences

IF 1 3区 数学 Q1 MATHEMATICS
L’ubomíra Dvořáková, Edita Pelantová
{"title":"The repetition threshold of episturmian sequences","authors":"L’ubomíra Dvořáková,&nbsp;Edita Pelantová","doi":"10.1016/j.ejc.2024.104001","DOIUrl":null,"url":null,"abstract":"<div><p>The repetition threshold of a class <span><math><mi>C</mi></math></span> of infinite <span><math><mi>d</mi></math></span>-ary sequences is the smallest real number <span><math><mi>r</mi></math></span> such that in the class <span><math><mi>C</mi></math></span> there exists a sequence that avoids <span><math><mi>e</mi></math></span>-powers for all <span><math><mrow><mi>e</mi><mo>&gt;</mo><mi>r</mi></mrow></math></span>. This notion was introduced by Dejean in 1972 for the class of all sequences over a <span><math><mi>d</mi></math></span>-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every <span><math><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences – one of the possible generalizations of Sturmian sequences. Here, we focus on the class of <span><math><mi>d</mi></math></span>-ary episturmian sequences – another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the <span><math><mi>d</mi></math></span>-bonacci sequence and its value equals <span><math><mrow><mn>2</mn><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>t</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span>, where <span><math><mrow><mi>t</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span> is the unique positive root of the polynomial <span><math><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mo>⋯</mo><mo>−</mo><mi>x</mi><mo>−</mo><mn>1</mn></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000866","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The repetition threshold of a class C of infinite d-ary sequences is the smallest real number r such that in the class C there exists a sequence that avoids e-powers for all e>r. This notion was introduced by Dejean in 1972 for the class of all sequences over a d-letter alphabet. Thanks to the effort of many authors over more than 30 years, the precise value of the repetition threshold in this class is known for every dN. The repetition threshold for the class of Sturmian sequences was determined by Carpi and de Luca in 2000. Sturmian sequences may be equivalently defined in various ways, therefore there exist many generalizations to larger alphabets. Rampersad, Shallit and Vandome in 2020 initiated a study of the repetition threshold for the class of balanced sequences – one of the possible generalizations of Sturmian sequences. Here, we focus on the class of d-ary episturmian sequences – another generalization of Sturmian sequences introduced by Droubay, Justin and Pirillo in 2001. We show that the repetition threshold of this class is reached by the d-bonacci sequence and its value equals 2+1t1, where t>1 is the unique positive root of the polynomial xdxd1x1.

表观序列的重复阈值
无穷 dary 序列类 C 的重复阈值是最小实数 r,使得类 C 中存在一个序列,该序列在所有 e>r 条件下都避免了 e-powers 。这一概念是德让于 1972 年针对 d 字母表上的所有序列类提出的。经过 30 多年来许多学者的努力,我们已经知道该类中每 d∈N 的重复阈值的精确值。Sturmian 序列类的重复阈值是由 Carpi 和 de Luca 在 2000 年确定的。Sturmian 序列可以用各种方法等价定义,因此存在许多适用于更大字母表的概括。Rampersad, Shallit 和 Vandome 于 2020 年开始研究平衡序列类的重复阈值--这是 Sturmian 序列的可能概括之一。在此,我们重点研究 dary episturmian 序列类,这是 Droubay、Justin 和 Pirillo 于 2001 年提出的 Sturmian 序列的另一种概括。我们证明,该类序列的重复阈值由 d-bonacci 序列达到,其值等于 2+1t-1,其中 t>1 是多项式 xd-xd-1-⋯-x-1 的唯一正根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信