GEPINN: An innovative hybrid method for a symbolic solution to the Lane–Emden type equation based on grammatical evolution and physics-informed neural networks
{"title":"GEPINN: An innovative hybrid method for a symbolic solution to the Lane–Emden type equation based on grammatical evolution and physics-informed neural networks","authors":"Hassan Dana Mazraeh , Kourosh Parand","doi":"10.1016/j.ascom.2024.100846","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present an innovative and powerful combination of grammatical evolution and a physics-informed neural network approach for symbolically solving the Lane–Emden type equation, which is a nonlinear ordinary differential equation. We employ a grammatical evolution algorithm based on a context-free grammar to construct a mathematical expression comprising some parameters. Subsequently, these parameters are determined using the physics-informed neural networks approach. To achieve this, the computational graph of the mathematical expression generated in each iteration of the grammatical evolution is treated as a network. To assess the proposed method, we consider the Lane–Emden type equation. The proposed method demonstrated that it is a capable method for symbolically solving nonlinear ordinary differential equations accurately.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100846"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000611","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present an innovative and powerful combination of grammatical evolution and a physics-informed neural network approach for symbolically solving the Lane–Emden type equation, which is a nonlinear ordinary differential equation. We employ a grammatical evolution algorithm based on a context-free grammar to construct a mathematical expression comprising some parameters. Subsequently, these parameters are determined using the physics-informed neural networks approach. To achieve this, the computational graph of the mathematical expression generated in each iteration of the grammatical evolution is treated as a network. To assess the proposed method, we consider the Lane–Emden type equation. The proposed method demonstrated that it is a capable method for symbolically solving nonlinear ordinary differential equations accurately.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.