Tailoring tin sulfide electrocatalyst with petroleum coke derived reduced graphene oxide for overall water splitting

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Chandan Kumar , Thangjam Ibomcha Singh , Pinky Saharan , Ashish Gupta , Jogender Singh , Mandeep Singh , S.R. Dhakate
{"title":"Tailoring tin sulfide electrocatalyst with petroleum coke derived reduced graphene oxide for overall water splitting","authors":"Chandan Kumar ,&nbsp;Thangjam Ibomcha Singh ,&nbsp;Pinky Saharan ,&nbsp;Ashish Gupta ,&nbsp;Jogender Singh ,&nbsp;Mandeep Singh ,&nbsp;S.R. Dhakate","doi":"10.1016/j.flatc.2024.100689","DOIUrl":null,"url":null,"abstract":"<div><p>Metal chalcogenides like Tin sulfide (SnS<sub>2</sub>) presents as viable alternative electrocatalysts for alkaline water splitting (AWS) due to their huge abundance, stability, and environment friendly nature. However, insufficient exposed active sites and poor conductivity severely impede its large-scale applications. In this work, an in-situ hybridization of hexagonal SnS<sub>2</sub> with intercalation of reduced graphene oxide nanosheets (TS-rGOx) overcomes the problem of SnS<sub>2</sub> stacking. It further enhances the interlayer spacing thereby boosting the number of active sites. The resulting TS-rGOx exhibited excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities demanding low overpotential of 313 mV and 196.2 mV at 20 mA/cm<sup>2</sup> with long term durability upto 60 h, which can be attributed to enhanced interlayer spacing of SnS<sub>2</sub>, abundant active sites and higher conductivity resulting from the in-situ hybridization and intercalation of rGO nanosheets. This work opens a prospect towards the design and application of efficient SnS<sub>2</sub> based heterostructured<!--> <!-->electrocatalyst<!--> <!-->for AWS.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"46 ","pages":"Article 100689"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000837","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal chalcogenides like Tin sulfide (SnS2) presents as viable alternative electrocatalysts for alkaline water splitting (AWS) due to their huge abundance, stability, and environment friendly nature. However, insufficient exposed active sites and poor conductivity severely impede its large-scale applications. In this work, an in-situ hybridization of hexagonal SnS2 with intercalation of reduced graphene oxide nanosheets (TS-rGOx) overcomes the problem of SnS2 stacking. It further enhances the interlayer spacing thereby boosting the number of active sites. The resulting TS-rGOx exhibited excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities demanding low overpotential of 313 mV and 196.2 mV at 20 mA/cm2 with long term durability upto 60 h, which can be attributed to enhanced interlayer spacing of SnS2, abundant active sites and higher conductivity resulting from the in-situ hybridization and intercalation of rGO nanosheets. This work opens a prospect towards the design and application of efficient SnS2 based heterostructured electrocatalyst for AWS.

Abstract Image

利用石油焦衍生的还原氧化石墨烯定制硫化锡电催化剂,实现整体水分离
硫化锡(SnS2)等金属卤化物因其大量存在、稳定性和环境友好性,可作为碱性水分离(AWS)的替代电催化剂。然而,活性位点暴露不足和导电性差严重阻碍了其大规模应用。在这项研究中,六方 SnS2 与还原氧化石墨烯纳米片(TS-rGOx)的原位杂化克服了 SnS2 堆叠的问题。它进一步增强了层间间距,从而增加了活性位点的数量。在 20 mA/cm2 的条件下,TS-rGOx 表现出卓越的氧进化反应(OER)和氢进化反应(HER)活性,过电位分别为 313 mV 和 196.2 mV,长期耐久性可达 60 h,这归因于 rGO 纳米片的原位杂交和插层增强了 SnS2 的层间距、丰富的活性位点和更高的导电性。这项工作为设计和应用基于 SnS2 的高效 AWS 异质结构电催化剂开辟了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信