Alessandro Calvia , Fausto Gozzi , Marta Leocata , Georgios I. Papayiannis , Anastasios Xepapadeas , Athanasios N. Yannacopoulos
{"title":"An optimal control problem with state constraints in a spatio-temporal economic growth model on networks","authors":"Alessandro Calvia , Fausto Gozzi , Marta Leocata , Georgios I. Papayiannis , Anastasios Xepapadeas , Athanasios N. Yannacopoulos","doi":"10.1016/j.jmateco.2024.102991","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a spatial economic growth model where space is described as a network of interconnected geographic locations and we study a corresponding finite-dimensional optimal control problem on a graph with state constraints. Economic growth models on networks are motivated by the nature of spatial economic data, which naturally possess a graph-like structure: this fact makes these models well-suited for numerical implementation and calibration. The network setting is different from the one adopted in the related literature, where space is modeled as a subset of a Euclidean space, which gives rise to infinite dimensional optimal control problems. After introducing the model and the related control problem, we prove existence and uniqueness of an optimal control and a regularity result for the value function, which sets up the basis for a deeper study of the optimal strategies. Then, we focus on specific cases where it is possible to find, under suitable assumptions, an explicit solution of the control problem. Finally, we discuss the cases of networks of two and three geographic locations.</p></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"113 ","pages":"Article 102991"},"PeriodicalIF":1.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406824000533","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a spatial economic growth model where space is described as a network of interconnected geographic locations and we study a corresponding finite-dimensional optimal control problem on a graph with state constraints. Economic growth models on networks are motivated by the nature of spatial economic data, which naturally possess a graph-like structure: this fact makes these models well-suited for numerical implementation and calibration. The network setting is different from the one adopted in the related literature, where space is modeled as a subset of a Euclidean space, which gives rise to infinite dimensional optimal control problems. After introducing the model and the related control problem, we prove existence and uniqueness of an optimal control and a regularity result for the value function, which sets up the basis for a deeper study of the optimal strategies. Then, we focus on specific cases where it is possible to find, under suitable assumptions, an explicit solution of the control problem. Finally, we discuss the cases of networks of two and three geographic locations.
期刊介绍:
The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.