Qianghui Guo , Yinglie Jin , Lisa H. Sun , Shina Xu
{"title":"Bijective enumeration of general stacks","authors":"Qianghui Guo , Yinglie Jin , Lisa H. Sun , Shina Xu","doi":"10.1016/j.aam.2024.102722","DOIUrl":null,"url":null,"abstract":"<div><p>Combinatorial enumeration of various RNA secondary structures and protein contact maps is of great interest for both combinatorists and computational biologists. Counting protein contact maps is much more difficult than that of RNA secondary structures due to the significant higher vertex degree. The state of art upper bound for vertex degree in previous works is two. This paper proposes a solution for counting general stacks with arbitrary vertex degree upper bound. By establishing a bijection between such general stacks and <em>m</em>-regular Λ-avoiding <em>DLU</em>-paths, and counting these pattern avoiding lattice paths, we obtain a unified system of equations for the generating functions of the number of general stacks. We further show that previous enumeration results for RNA secondary structures and linear stacks of protein contact maps can be derived from the equations for general stacks as special cases.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582400054X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Combinatorial enumeration of various RNA secondary structures and protein contact maps is of great interest for both combinatorists and computational biologists. Counting protein contact maps is much more difficult than that of RNA secondary structures due to the significant higher vertex degree. The state of art upper bound for vertex degree in previous works is two. This paper proposes a solution for counting general stacks with arbitrary vertex degree upper bound. By establishing a bijection between such general stacks and m-regular Λ-avoiding DLU-paths, and counting these pattern avoiding lattice paths, we obtain a unified system of equations for the generating functions of the number of general stacks. We further show that previous enumeration results for RNA secondary structures and linear stacks of protein contact maps can be derived from the equations for general stacks as special cases.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.