Jiangyang Zhang , Fan Zhang , Jian Lin , Xiang Gao , Chen Cai , Zhiyuan Zhou
{"title":"Mantle serpentinization of subducting plate are controlled by combined effect of plate age and bending curvature","authors":"Jiangyang Zhang , Fan Zhang , Jian Lin , Xiang Gao , Chen Cai , Zhiyuan Zhou","doi":"10.1016/j.epsl.2024.118799","DOIUrl":null,"url":null,"abstract":"<div><p>A primary pathway for surface water to enter the Earth's interior is through faulting of oceanic plates. Mantle hydration of subducting plate is considered to play an important role on the water flux of subduction zone. Previous studies have found that the mantle hydration was related to plate bending and faulting, however the controlling mechanism of plate bending on mantle hydration at subduction zone is still highly unclear. In this study, we use the latest obtained reduction in uppermost mantle <em>P-</em>wave velocity (<em>V</em><sub>p</sub>) profiles beneath the subduction zone outer rise region, which is thought to be the result of mantle serpentinization, to examine the degrees of mantle serpentinization at several subduction zones and analyzed their relationship to plate age, bending curvature, and the sediment thickness near the trench. Results of analysis revealed that the average degree of the estimated mantle serpentinization increases with both the plate age and bending curvature, while it is hampered by sedimentation. The thick sediment can almost entirely prevent water from entering the mantle. Importantly, we found a good linear correlation between the reduction of uppermost mantle <em>V</em><sub>p</sub> and the theoretical brittle extensional strain determined by plate age and curvature. Based on this, a mechanism is proposed to illustrate the governing mechanism of the combined effect of the plate age and bending curvature in controlling the mantle serpentinization degree for global subduction zones.</p></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X24002322","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A primary pathway for surface water to enter the Earth's interior is through faulting of oceanic plates. Mantle hydration of subducting plate is considered to play an important role on the water flux of subduction zone. Previous studies have found that the mantle hydration was related to plate bending and faulting, however the controlling mechanism of plate bending on mantle hydration at subduction zone is still highly unclear. In this study, we use the latest obtained reduction in uppermost mantle P-wave velocity (Vp) profiles beneath the subduction zone outer rise region, which is thought to be the result of mantle serpentinization, to examine the degrees of mantle serpentinization at several subduction zones and analyzed their relationship to plate age, bending curvature, and the sediment thickness near the trench. Results of analysis revealed that the average degree of the estimated mantle serpentinization increases with both the plate age and bending curvature, while it is hampered by sedimentation. The thick sediment can almost entirely prevent water from entering the mantle. Importantly, we found a good linear correlation between the reduction of uppermost mantle Vp and the theoretical brittle extensional strain determined by plate age and curvature. Based on this, a mechanism is proposed to illustrate the governing mechanism of the combined effect of the plate age and bending curvature in controlling the mantle serpentinization degree for global subduction zones.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.