Yvan Le Marc, Emilie Petton, Anne Lochardet, Florence Postollec, Véronique Huchet
{"title":"Growth limits of psychrotrophic Bacillus cereus as a function of temperature, pH, water activity, and lactic or acetic acid","authors":"Yvan Le Marc, Emilie Petton, Anne Lochardet, Florence Postollec, Véronique Huchet","doi":"10.1016/j.mran.2024.100310","DOIUrl":null,"url":null,"abstract":"<div><p>This work focuses on the effects of temperature, pH, water activity, and concentrations of acetic or lactic acid on the growth limits of psychrotrophic <em>Bacillus cereus sensu lato</em> (<em>s.l.</em>). A previously published growth boundary model, based on an ‘interaction term’, was extended by the integration of new environmental factors. Further development has been made by replacing, wherever possible, the single values for strain-dependent parameters by statistical distributions, making it possible to describe the intra-group variability in <em>B. cereus s.l.</em> behaviour. The parameters associated with organic acid (i.e., the Minimum Inhibitory Concentrations, MIC) were determined for one strain for lactic acid and three strains for acetic acid. The MICs estimated were close to previously published values for mesophilic reference group III strain F4810/72. The growth/ no growth interface for psychrotrophic <em>B. cereus s.l.</em> in absence of organic acid was defined by the lower growth limits obtained separately for “groups II and V” and “group VI”. The model predictions for the transition between the “no-growth only” and “possible growth” provide fail-safe predictions for ComBase and literature data (468 records). To investigate behaviour of psychrotrophic <em>B. cereus s.l.</em> under organic acid, growth/ no growth data were generated at 15 °C (simulating mild temperature abuse) for three <em>B. cereus s.l.</em> strains (one from group II and two from group VI) at different pH levels (between 4.8 and 6.2), water activities (between 0.974 and 0.997) and concentrations of acetic acid (up to 45 mM) or lactic acid (up to 100 mM). Each of the three strains was studied separately for a total of 312 experiments. The minimum pH levels required for growth increase in the presence of lactic or acetic acid, highlighting their inhibitory effects. These inhibitory effects are enhanced at the lowest water activity tested. Although, group VI strains were reported to be more affected by low a<sub>w</sub>, only small differences were observed between group II and group VI at a<sub>w</sub> 0.974. The developed model was found to provide conservative (i.e. fail-safe) predictions for the growth limits under acetic or lactic acid at 15 °C.</p></div>","PeriodicalId":48593,"journal":{"name":"Microbial Risk Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Risk Analysis","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352352224000215","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work focuses on the effects of temperature, pH, water activity, and concentrations of acetic or lactic acid on the growth limits of psychrotrophic Bacillus cereus sensu lato (s.l.). A previously published growth boundary model, based on an ‘interaction term’, was extended by the integration of new environmental factors. Further development has been made by replacing, wherever possible, the single values for strain-dependent parameters by statistical distributions, making it possible to describe the intra-group variability in B. cereus s.l. behaviour. The parameters associated with organic acid (i.e., the Minimum Inhibitory Concentrations, MIC) were determined for one strain for lactic acid and three strains for acetic acid. The MICs estimated were close to previously published values for mesophilic reference group III strain F4810/72. The growth/ no growth interface for psychrotrophic B. cereus s.l. in absence of organic acid was defined by the lower growth limits obtained separately for “groups II and V” and “group VI”. The model predictions for the transition between the “no-growth only” and “possible growth” provide fail-safe predictions for ComBase and literature data (468 records). To investigate behaviour of psychrotrophic B. cereus s.l. under organic acid, growth/ no growth data were generated at 15 °C (simulating mild temperature abuse) for three B. cereus s.l. strains (one from group II and two from group VI) at different pH levels (between 4.8 and 6.2), water activities (between 0.974 and 0.997) and concentrations of acetic acid (up to 45 mM) or lactic acid (up to 100 mM). Each of the three strains was studied separately for a total of 312 experiments. The minimum pH levels required for growth increase in the presence of lactic or acetic acid, highlighting their inhibitory effects. These inhibitory effects are enhanced at the lowest water activity tested. Although, group VI strains were reported to be more affected by low aw, only small differences were observed between group II and group VI at aw 0.974. The developed model was found to provide conservative (i.e. fail-safe) predictions for the growth limits under acetic or lactic acid at 15 °C.
期刊介绍:
The journal Microbial Risk Analysis accepts articles dealing with the study of risk analysis applied to microbial hazards. Manuscripts should at least cover any of the components of risk assessment (risk characterization, exposure assessment, etc.), risk management and/or risk communication in any microbiology field (clinical, environmental, food, veterinary, etc.). This journal also accepts article dealing with predictive microbiology, quantitative microbial ecology, mathematical modeling, risk studies applied to microbial ecology, quantitative microbiology for epidemiological studies, statistical methods applied to microbiology, and laws and regulatory policies aimed at lessening the risk of microbial hazards. Work focusing on risk studies of viruses, parasites, microbial toxins, antimicrobial resistant organisms, genetically modified organisms (GMOs), and recombinant DNA products are also acceptable.