UrbanClassifier: A deep learning-based model for automated typology and temporal analysis of urban fabric across multiple spatial scales and viewpoints

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Zhou Fang , Ying Jin , Shuwen Zheng , Liang Zhao , Tianren Yang
{"title":"UrbanClassifier: A deep learning-based model for automated typology and temporal analysis of urban fabric across multiple spatial scales and viewpoints","authors":"Zhou Fang ,&nbsp;Ying Jin ,&nbsp;Shuwen Zheng ,&nbsp;Liang Zhao ,&nbsp;Tianren Yang","doi":"10.1016/j.compenvurbsys.2024.102132","DOIUrl":null,"url":null,"abstract":"<div><p>The field of urban morphology, crucial for understanding the evolutionary trajectories of cityscapes, has traditionally depended on manual classification methods. The surge in deep learning and computer vision technologies presents an opportunity to automate and enhance urban typo-morphology studies. This research addresses three critical shortcomings in the current body of work: the neglect of urban fabric's three-dimensional qualities, the homogeneity of spatial scales in dataset creation and the dependence on a single-perspective for urban fabric classification. A novel deep learning-based model, UrbanClassifier, is introduced, trained on a substantial dataset that encapsulates the three-dimensionality of urban fabric along with morphological types and development periods. Extensive experimentation across four European cities highlights the model's ability to incorporate diverse spatial scales and viewpoints in urban fabric analysis. The UrbanClassifier exemplifies a method integrating features from various scales and perspectives, thus laying the groundwork for scalable and accessible urban typo-morphology studies, aiding practitioners in discerning the spatio-temporal evolution of urban fabric.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"111 ","pages":"Article 102132"},"PeriodicalIF":7.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000619","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

The field of urban morphology, crucial for understanding the evolutionary trajectories of cityscapes, has traditionally depended on manual classification methods. The surge in deep learning and computer vision technologies presents an opportunity to automate and enhance urban typo-morphology studies. This research addresses three critical shortcomings in the current body of work: the neglect of urban fabric's three-dimensional qualities, the homogeneity of spatial scales in dataset creation and the dependence on a single-perspective for urban fabric classification. A novel deep learning-based model, UrbanClassifier, is introduced, trained on a substantial dataset that encapsulates the three-dimensionality of urban fabric along with morphological types and development periods. Extensive experimentation across four European cities highlights the model's ability to incorporate diverse spatial scales and viewpoints in urban fabric analysis. The UrbanClassifier exemplifies a method integrating features from various scales and perspectives, thus laying the groundwork for scalable and accessible urban typo-morphology studies, aiding practitioners in discerning the spatio-temporal evolution of urban fabric.

UrbanClassifier:基于深度学习的模型,用于跨空间尺度和视角对城市结构进行自动类型学和时间分析
城市形态学对了解城市景观的演变轨迹至关重要,但该领域传统上一直依赖人工分类方法。深度学习和计算机视觉技术的迅猛发展为城市错字形态研究的自动化和增强提供了机遇。这项研究解决了当前工作中的三个关键缺陷:忽视城市肌理的三维特质、数据集创建中空间尺度的单一性以及城市肌理分类对单一视角的依赖。本文介绍了一种基于深度学习的新型模型--UrbanClassifier,该模型在大量数据集上进行了训练,囊括了城市结构的三维性、形态类型和发展时期。在四个欧洲城市进行的广泛实验突出表明,该模型能够将不同的空间尺度和视角纳入城市结构分析。UrbanClassifier 是将不同尺度和视角的特征整合在一起的方法的典范,从而为可扩展和可访问的城市错字形态研究奠定了基础,有助于从业人员辨别城市结构的时空演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信