{"title":"Counterintuitive chemoselectivity in the reduction of carbonyl compounds","authors":"Takanori Iwasaki, Kyoko Nozaki","doi":"10.1038/s41570-024-00608-z","DOIUrl":null,"url":null,"abstract":"The reactivity of carbonyl functional groups largely depends on the substituents on the carbon atom. Reversal of the commonly accepted order of reactivity of different carbonyl compounds requires novel synthetic approaches. Achieving selective reduction will enable the transformation of carbon resources such as plastic waste, carbon dioxide and biomass into valuable chemicals. In this Review, we explore the reduction of less reactive carbonyl groups in the presence of those typically considered more reactive. We discuss reductions, including the controlled reduction of ureas, amides and esters to aldehydes, as well as chemoselective reductions of carbonyl groups, including the reduction of ureas over carbamates, amides and esters; the reduction of amides over esters, ketones and aldehydes; and the reduction of ketones over aldehydes. Reversing the intuitive order of reactivity of functional groups provides new synthetic strategies and enables utilization of chemical feedstocks, such as plastic waste, carbon dioxide and biomass. This Review highlights the chemoselective reduction of carbonyl compounds with a counterintuitive reactivity order.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 7","pages":"518-534"},"PeriodicalIF":38.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-024-00608-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The reactivity of carbonyl functional groups largely depends on the substituents on the carbon atom. Reversal of the commonly accepted order of reactivity of different carbonyl compounds requires novel synthetic approaches. Achieving selective reduction will enable the transformation of carbon resources such as plastic waste, carbon dioxide and biomass into valuable chemicals. In this Review, we explore the reduction of less reactive carbonyl groups in the presence of those typically considered more reactive. We discuss reductions, including the controlled reduction of ureas, amides and esters to aldehydes, as well as chemoselective reductions of carbonyl groups, including the reduction of ureas over carbamates, amides and esters; the reduction of amides over esters, ketones and aldehydes; and the reduction of ketones over aldehydes. Reversing the intuitive order of reactivity of functional groups provides new synthetic strategies and enables utilization of chemical feedstocks, such as plastic waste, carbon dioxide and biomass. This Review highlights the chemoselective reduction of carbonyl compounds with a counterintuitive reactivity order.
期刊介绍:
Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.