Karen N McFarland, Anjana Tiwari, Vera Hashem, Linwei Zhang, Desmond Zeng, Justin Vincent, Maria J Arredondo, Kristy L Johnson, Shi Rui Gan, Ichiro Yabe, Laurits Skov, Astrid Rasmussen, Tetsuo Ashizawa
{"title":"Extended haplotype with rs41524547-G defines the ancestral origin of SCA10.","authors":"Karen N McFarland, Anjana Tiwari, Vera Hashem, Linwei Zhang, Desmond Zeng, Justin Vincent, Maria J Arredondo, Kristy L Johnson, Shi Rui Gan, Ichiro Yabe, Laurits Skov, Astrid Rasmussen, Tetsuo Ashizawa","doi":"10.1093/hmg/ddae092","DOIUrl":null,"url":null,"abstract":"<p><p>Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant ataxia caused by a large expansion of the (ATTCT)n repeat in ATXN10. SCA10 was described in Native American and Asian individuals which prompted a search for an expanded haplotype to confirm a common ancestral origin for the expansion event. All patients with SCA10 expansions in our cohort share a single haplotype defined at the 5'-end by the minor allele of rs41524547, located ~35 kb upstream of the SCA10 expansion. Intriguingly, rs41524547 is located within the miRNA gene, MIR4762, within its DROSHA cleavage site and just outside the seed sequence for mir4792-5p. The world-wide frequency of rs41524547-G is less than 5% and found almost exclusively in the Americas and East Asia-a geographic distribution that mirrors reported SCA10 cases. We identified rs41524547-G(+) DNA from the 1000 Genomes/International Genome Sample Resource and our own general population samples and identified SCA10 repeat expansions in up to 25% of these samples. The reduced penetrance of these SCA10 expansions may be explained by a young (pre-onset) age at sample collection, a small repeat size, purity of repeat units, or the disruption of miR4762-5p function. We conclude that rs41524547-G is the most robust at-risk SNP allele for SCA10, is useful for screening of SCA10 expansions in population genetics studies and provides the most compelling evidence to date for a single, prehistoric origin of SCA10 expansions sometime prior to or during the migration of individuals across the Bering Land Bridge into the Americas.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae092","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Spinocerebellar ataxia type 10 (SCA10) is a rare autosomal dominant ataxia caused by a large expansion of the (ATTCT)n repeat in ATXN10. SCA10 was described in Native American and Asian individuals which prompted a search for an expanded haplotype to confirm a common ancestral origin for the expansion event. All patients with SCA10 expansions in our cohort share a single haplotype defined at the 5'-end by the minor allele of rs41524547, located ~35 kb upstream of the SCA10 expansion. Intriguingly, rs41524547 is located within the miRNA gene, MIR4762, within its DROSHA cleavage site and just outside the seed sequence for mir4792-5p. The world-wide frequency of rs41524547-G is less than 5% and found almost exclusively in the Americas and East Asia-a geographic distribution that mirrors reported SCA10 cases. We identified rs41524547-G(+) DNA from the 1000 Genomes/International Genome Sample Resource and our own general population samples and identified SCA10 repeat expansions in up to 25% of these samples. The reduced penetrance of these SCA10 expansions may be explained by a young (pre-onset) age at sample collection, a small repeat size, purity of repeat units, or the disruption of miR4762-5p function. We conclude that rs41524547-G is the most robust at-risk SNP allele for SCA10, is useful for screening of SCA10 expansions in population genetics studies and provides the most compelling evidence to date for a single, prehistoric origin of SCA10 expansions sometime prior to or during the migration of individuals across the Bering Land Bridge into the Americas.