MiR-483-3p promotes dental pulp stem cells osteogenic differentiation via the MAPK signaling pathway by targeting ARRB2.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Xin Yu, Juan Ge, Huimin Xie, Jialu Qian, Wenqian Xia, Qinghua Wang, Xiaorong Zhou, Yan Zhou
{"title":"MiR-483-3p promotes dental pulp stem cells osteogenic differentiation via the MAPK signaling pathway by targeting ARRB2.","authors":"Xin Yu, Juan Ge, Huimin Xie, Jialu Qian, Wenqian Xia, Qinghua Wang, Xiaorong Zhou, Yan Zhou","doi":"10.1007/s11626-024-00929-9","DOIUrl":null,"url":null,"abstract":"<p><p>Human dental pulp stem cells (DPSCs) have become an important component for bone tissue engineering and regenerative medicine due to their ability to differentiate into osteoblast precursors. Two miRNA chip datasets (GSE138180 and E-MTAB-3077) of DPSCs osteogenic differentiation were analyzed respectively to find the expression of miR-483-3p significantly increased in the differentiated groups. We further confirmed that miR-483-3p continued to overexpress during osteogenic differentiation of DPSCs, especially reaching its peak on the 7th day. Moreover, miR-483-3p could significantly promote the expression of osteogenic markers including RUNX2 and OSX, and activate MAPK signaling pathway by inducing phosphorylation of ERK, p38, and JNK. In addition, as a significant gene within the MAPK signaling pathway, ARRB2 was identified as the target gene of miR-483-3p by bioinformatic prediction and experimental verification. In conclusion, we identified miR-483-3p could promote osteogenic differentiation of DPSCs via the MAPK signaling pathway by targeting ARRB2.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"879-887"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00929-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human dental pulp stem cells (DPSCs) have become an important component for bone tissue engineering and regenerative medicine due to their ability to differentiate into osteoblast precursors. Two miRNA chip datasets (GSE138180 and E-MTAB-3077) of DPSCs osteogenic differentiation were analyzed respectively to find the expression of miR-483-3p significantly increased in the differentiated groups. We further confirmed that miR-483-3p continued to overexpress during osteogenic differentiation of DPSCs, especially reaching its peak on the 7th day. Moreover, miR-483-3p could significantly promote the expression of osteogenic markers including RUNX2 and OSX, and activate MAPK signaling pathway by inducing phosphorylation of ERK, p38, and JNK. In addition, as a significant gene within the MAPK signaling pathway, ARRB2 was identified as the target gene of miR-483-3p by bioinformatic prediction and experimental verification. In conclusion, we identified miR-483-3p could promote osteogenic differentiation of DPSCs via the MAPK signaling pathway by targeting ARRB2.

Abstract Image

MiR-483-3p 通过靶向 ARRB2,通过 MAPK 信号通路促进牙髓干细胞成骨分化。
人牙髓干细胞(DPSCs)具有分化成成骨细胞前体的能力,已成为骨组织工程和再生医学的重要组成部分。我们分别分析了牙髓干细胞成骨分化的两个 miRNA 芯片数据集(GSE138180 和 E-MTAB-3077),发现 miR-483-3p 的表达在分化组中显著增加。我们进一步证实,miR-483-3p在DPSCs成骨分化过程中持续过表达,尤其是在第7天达到峰值。此外,miR-483-3p 还能显著促进成骨标志物(包括 RUNX2 和 OSX)的表达,并通过诱导 ERK、p38 和 JNK 的磷酸化激活 MAPK 信号通路。此外,作为 MAPK 信号通路中的一个重要基因,通过生物信息学预测和实验验证,ARRB2 被确定为 miR-483-3p 的靶基因。总之,我们发现 miR-483-3p 可以通过靶向 ARRB2,通过 MAPK 信号通路促进 DPSCs 的成骨分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信