{"title":"Microwave-multiplexed qubit controller using adiabatic superconductor logic","authors":"Naoki Takeuchi, Taiki Yamae, Taro Yamashita, Tsuyoshi Yamamoto, Nobuyuki Yoshikawa","doi":"10.1038/s41534-024-00849-2","DOIUrl":null,"url":null,"abstract":"<p>Cryogenic qubit controllers (QCs) are the key to build large-scale superconducting quantum processors. However, developing scalable QCs is challenging because the cooling power of a dilution refrigerator is too small (~10 μW at ~10 mK) to operate conventional logic families, such as complementary metal-oxide-semiconductor logic and superconducting single-flux-quantum logic, near qubits. Here we report on a scalable QC using an ultra-low-power superconductor logic family, namely adiabatic quantum-flux-parametron (AQFP) logic. The AQFP-based QC, referred to as the AQFP-multiplexed QC (AQFP-mux QC), produces multi-tone microwave signals for qubit control with an extremely small power dissipation of 81.8 pW per qubit. Furthermore, the AQFP-mux QC adopts microwave multiplexing to reduce the number of coaxial cables for operating the entire system. As a proof of concept, we demonstrate an AQFP-mux QC chip that produces microwave signals at two output ports through microwave multiplexing and demultiplexing. Experimental results show an output power of approximately −80 dBm and on/off ratio of ~40 dB at each output port. Basic mixing operation is also demonstrated by observing sideband signals.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"46 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00849-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cryogenic qubit controllers (QCs) are the key to build large-scale superconducting quantum processors. However, developing scalable QCs is challenging because the cooling power of a dilution refrigerator is too small (~10 μW at ~10 mK) to operate conventional logic families, such as complementary metal-oxide-semiconductor logic and superconducting single-flux-quantum logic, near qubits. Here we report on a scalable QC using an ultra-low-power superconductor logic family, namely adiabatic quantum-flux-parametron (AQFP) logic. The AQFP-based QC, referred to as the AQFP-multiplexed QC (AQFP-mux QC), produces multi-tone microwave signals for qubit control with an extremely small power dissipation of 81.8 pW per qubit. Furthermore, the AQFP-mux QC adopts microwave multiplexing to reduce the number of coaxial cables for operating the entire system. As a proof of concept, we demonstrate an AQFP-mux QC chip that produces microwave signals at two output ports through microwave multiplexing and demultiplexing. Experimental results show an output power of approximately −80 dBm and on/off ratio of ~40 dB at each output port. Basic mixing operation is also demonstrated by observing sideband signals.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.