Subcutaneous biodegradable scaffolds for restimulating the antitumour activity of pre-administered CAR-T cells

IF 26.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
David K. Y. Zhang, Joshua M. Brockman, Kwasi Adu-Berchie, Yutong Liu, Yoav Binenbaum, Irene de Lázaro, Miguel C. Sobral, Rea Tresa, David J. Mooney
{"title":"Subcutaneous biodegradable scaffolds for restimulating the antitumour activity of pre-administered CAR-T cells","authors":"David K. Y. Zhang, Joshua M. Brockman, Kwasi Adu-Berchie, Yutong Liu, Yoav Binenbaum, Irene de Lázaro, Miguel C. Sobral, Rea Tresa, David J. Mooney","doi":"10.1038/s41551-024-01216-4","DOIUrl":null,"url":null,"abstract":"<p>The efficacy of adoptive T-cell therapies based on chimaeric antigen receptors (CARs) is limited by the poor proliferation and persistence of the engineered T cells. Here we show that a subcutaneously injected biodegradable scaffold that facilitates the infiltration and egress of specific T-cell subpopulations, which forms a microenvironment mimicking features of physiological T-cell activation, enhances the antitumour activity of pre-administered CAR-T cells. CAR-T-cell expansion, differentiation and cytotoxicity were driven by the scaffold’s incorporation of co-stimulatory bound ligands and soluble molecules, and depended on the types of co-stimulatory molecules and the context in which they were presented. In mice with aggressive lymphoma, a single, local injection of the scaffold following non-curative CAR-T-cell dosing led to more persistent memory-like T cells and extended animal survival. Injectable biomaterials with optimized ligand presentation may boost the therapeutic performance of CAR-T-cell therapies.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"4 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01216-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of adoptive T-cell therapies based on chimaeric antigen receptors (CARs) is limited by the poor proliferation and persistence of the engineered T cells. Here we show that a subcutaneously injected biodegradable scaffold that facilitates the infiltration and egress of specific T-cell subpopulations, which forms a microenvironment mimicking features of physiological T-cell activation, enhances the antitumour activity of pre-administered CAR-T cells. CAR-T-cell expansion, differentiation and cytotoxicity were driven by the scaffold’s incorporation of co-stimulatory bound ligands and soluble molecules, and depended on the types of co-stimulatory molecules and the context in which they were presented. In mice with aggressive lymphoma, a single, local injection of the scaffold following non-curative CAR-T-cell dosing led to more persistent memory-like T cells and extended animal survival. Injectable biomaterials with optimized ligand presentation may boost the therapeutic performance of CAR-T-cell therapies.

Abstract Image

皮下生物可降解支架用于重新激发预先注射的 CAR-T 细胞的抗肿瘤活性
基于嵌合抗原受体(CAR)的采纳 T 细胞疗法的疗效因工程 T 细胞的增殖性和持久性较差而受到限制。在这里,我们展示了一种皮下注射的生物可降解支架,它能促进特定T细胞亚群的浸润和排出,形成一个模拟生理性T细胞活化特征的微环境,从而增强预给药CAR-T细胞的抗肿瘤活性。CAR-T细胞的扩增、分化和细胞毒性是由支架中的共刺激结合配体和可溶性分子驱动的,并取决于共刺激分子的类型及其呈现的环境。在患有侵袭性淋巴瘤的小鼠身上,在注射非治愈性CAR-T细胞后局部注射一次支架,可获得更持久的记忆样T细胞,并延长动物的存活时间。具有优化配体呈现的可注射生物材料可能会提高CAR-T细胞疗法的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Biomedical Engineering
Nature Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
45.30
自引率
1.10%
发文量
138
期刊介绍: Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信