A method for estimating coefficient of lateral earth pressure based on cone penetration tests

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Donggun Nam, Qaisar Abbas, Junhwan Lee
{"title":"A method for estimating coefficient of lateral earth pressure based on cone penetration tests","authors":"Donggun Nam,&nbsp;Qaisar Abbas,&nbsp;Junhwan Lee","doi":"10.1016/j.sandf.2024.101474","DOIUrl":null,"url":null,"abstract":"<div><p>The coefficient of lateral earth pressure at rest (K<sub>0</sub>) is a key state soil variable for the design of foundations and underground structures, characterizes in-situ stress state and soil condition. In this study, a method for the in-situ estimation of K<sub>0</sub> using the cone penetration test (CPT) is proposed considering vertical and inclined cone resistances (q<sub>c</sub>). For this purpose, a series of laboratory CPTs in a soil chamber were conducted to obtain and characterize vertical and inclined q<sub>c</sub> values at various inclination angles (θ) and relative densities (D<sub>R</sub>). It was observed that the values of q<sub>c</sub> increased as θ increased, which was more pronounced at higher D<sub>R</sub>. Coupled Eulerian-Lagrangian (CEL) finite element analyses were performed to quantify the values of inclined q<sub>c</sub> at various cone penetration and soil conditions. Based on results from laboratory CPTs and CEL analyses, a CPT-based K<sub>0</sub> correlation model was established, which was given as a function of vertical and inclined q<sub>c</sub> values. The model parameter for the proposed method was evaluated and quantified. The validity of the proposed method was confirmed from the comparison with case examples.</p></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 3","pages":"Article 101474"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0038080624000520/pdfft?md5=6332fbc495ae3d617c0212322b941546&pid=1-s2.0-S0038080624000520-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624000520","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The coefficient of lateral earth pressure at rest (K0) is a key state soil variable for the design of foundations and underground structures, characterizes in-situ stress state and soil condition. In this study, a method for the in-situ estimation of K0 using the cone penetration test (CPT) is proposed considering vertical and inclined cone resistances (qc). For this purpose, a series of laboratory CPTs in a soil chamber were conducted to obtain and characterize vertical and inclined qc values at various inclination angles (θ) and relative densities (DR). It was observed that the values of qc increased as θ increased, which was more pronounced at higher DR. Coupled Eulerian-Lagrangian (CEL) finite element analyses were performed to quantify the values of inclined qc at various cone penetration and soil conditions. Based on results from laboratory CPTs and CEL analyses, a CPT-based K0 correlation model was established, which was given as a function of vertical and inclined qc values. The model parameter for the proposed method was evaluated and quantified. The validity of the proposed method was confirmed from the comparison with case examples.

基于锥入度试验的侧向土压力系数估算方法
静止侧向土压力系数(K0)是地基和地下结构设计中的一个关键土壤状态变量,表征了原位应力状态和土壤条件。本研究提出了一种利用锥入度试验(CPT)原位估算 K0 的方法,考虑了垂直和倾斜锥阻力(qc)。为此,在一个土壤室中进行了一系列实验室 CPT,以获得并描述不同倾角 (θ) 和相对密度 (DR) 下的垂直和倾斜 qc 值。结果表明,qc 值随着 θ 的增大而增大,在 DR 较高时更为明显。进行了欧拉-拉格朗日(CEL)耦合有限元分析,以量化不同锥入度和土壤条件下的倾斜 qc 值。根据实验室 CPT 和 CEL 分析的结果,建立了基于 CPT 的 K0 相关模型,该模型是垂直和倾斜 qc 值的函数。对建议方法的模型参数进行了评估和量化。通过与实例的比较,确认了所建议方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信