Synthesis of New Composite Adsorbents for Removing Heavy Metals and Dyes from Aqueous Solution

IF 1.3 Q4 ENGINEERING, ENVIRONMENTAL
L. Mokif, Zahraa H. Obaid, Sarab A. Juda
{"title":"Synthesis of New Composite Adsorbents for Removing Heavy Metals and Dyes from Aqueous Solution","authors":"L. Mokif, Zahraa H. Obaid, Sarab A. Juda","doi":"10.12911/22998993/187148","DOIUrl":null,"url":null,"abstract":"In the current study, a novel composite (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) was prepared to remove crystal violet dye and cadmium from aqueous solutions. The coprecipitation method was utilized to synthesize the composite. Batch studies were carried out using a contact period of 0.5–3 hours, an initial crystal violet and cadmium content of 50–200 mg/L, an agitation speed of 50–200 rpm, a pH of 4–12, and a composite dosage of 0.2–1.0 g per 50 mL of contaminated solution. The isotherm and kinetics models were formulated the experimental data. XRD, SEM-EDS, and FTIR analyses were utilized for composite characterization. The results revealed that the removal efficacy of crystal violet dye was 99.311% at 1 g of adsorbent, pH 12, 50 mg/L, 1 hour, and 200 rpm. The removal efficacy for cadmium (Cd) is 99.7296% at 1 g of sorbent mass at pH 6, 50 mg/L, 1 hour, and 200 rpm. The outcomes demonstrated that the Langmuir model could accurately depict the sorption of crystal violet dye onto the composite with R 2 (0.9882) and SSE (0.7084). On the basis of Freundlich, the capacity of the composite to reflect cadmium sorption was assessed by its highest R 2 (0.8947) and lowest SSE (8.5149). The pseudo-second-order model is a more realistic way to explain how cadmium and crystal violet dye sorb onto the composite. The results showed that the composite is effective in eliminating target pollutants, since cadmium has a maximum adsorption capacity of 48.5052 mg/g and crystal violet dye has a capacity of 40.9682 mg/g. Therefore, (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) can be used as efficient sorbent for removing Cd and crystal violet dye from synthetic industrial wastewater.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/187148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the current study, a novel composite (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) was prepared to remove crystal violet dye and cadmium from aqueous solutions. The coprecipitation method was utilized to synthesize the composite. Batch studies were carried out using a contact period of 0.5–3 hours, an initial crystal violet and cadmium content of 50–200 mg/L, an agitation speed of 50–200 rpm, a pH of 4–12, and a composite dosage of 0.2–1.0 g per 50 mL of contaminated solution. The isotherm and kinetics models were formulated the experimental data. XRD, SEM-EDS, and FTIR analyses were utilized for composite characterization. The results revealed that the removal efficacy of crystal violet dye was 99.311% at 1 g of adsorbent, pH 12, 50 mg/L, 1 hour, and 200 rpm. The removal efficacy for cadmium (Cd) is 99.7296% at 1 g of sorbent mass at pH 6, 50 mg/L, 1 hour, and 200 rpm. The outcomes demonstrated that the Langmuir model could accurately depict the sorption of crystal violet dye onto the composite with R 2 (0.9882) and SSE (0.7084). On the basis of Freundlich, the capacity of the composite to reflect cadmium sorption was assessed by its highest R 2 (0.8947) and lowest SSE (8.5149). The pseudo-second-order model is a more realistic way to explain how cadmium and crystal violet dye sorb onto the composite. The results showed that the composite is effective in eliminating target pollutants, since cadmium has a maximum adsorption capacity of 48.5052 mg/g and crystal violet dye has a capacity of 40.9682 mg/g. Therefore, (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) can be used as efficient sorbent for removing Cd and crystal violet dye from synthetic industrial wastewater.
合成用于去除水溶液中重金属和染料的新型复合吸附剂
本研究制备了一种新型复合材料(Fe 3 O 4 @MnO 2 @Al 2 O 3),用于去除水溶液中的水晶紫染料和镉。该复合材料的合成采用了共沉淀法。批量研究的接触时间为 0.5-3 小时,初始水晶紫和镉含量为 50-200 毫克/升,搅拌速度为 50-200 转/分钟,pH 值为 4-12,复合材料用量为每 50 毫升污染溶液 0.2-1.0 克。根据实验数据建立了等温线和动力学模型。利用 XRD、SEM-EDS 和傅立叶变换红外光谱分析了复合材料的特性。结果表明,在 1 克吸附剂、pH 值为 12、50 毫克/升、1 小时和 200 转/分的条件下,水晶紫染料的去除率为 99.311%。在 pH 值 6、50 毫克/升、1 小时和 200 转/分条件下,吸附剂质量为 1 克时,镉(Cd)的去除率为 99.7296%。结果表明,朗缪尔模型可以准确地描述水晶紫染料在复合材料上的吸附情况,其 R 2 为 0.9882,SSE 为 0.7084。在 Freundlich 模型的基础上,复合材料对镉的吸附能力由其最高的 R 2(0.8947)和最低的 SSE(8.5149)来评估。伪二阶模型能更真实地解释镉和结晶紫染料如何吸附到复合材料上。结果表明,由于镉的最大吸附容量为 48.5052 mg/g,水晶紫染料的吸附容量为 40.9682 mg/g,因此该复合材料能有效消除目标污染物。因此,(Fe 3 O 4 @MnO 2 @Al 2 O 3)可用作去除合成工业废水中镉和水晶紫染料的高效吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ecological Engineering
Journal of Ecological Engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
2.60
自引率
15.40%
发文量
379
审稿时长
8 weeks
期刊介绍: - Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信