Amenability of bounded automata groups on infinite alphabets

IF 0.8 3区 数学 Q2 MATHEMATICS
Bernhard Reinke
{"title":"Amenability of bounded automata groups on infinite alphabets","authors":"Bernhard Reinke","doi":"10.1112/blms.13065","DOIUrl":null,"url":null,"abstract":"<p>We study the action of groups generated by bounded activity automata with infinite alphabets on their orbital Schreier graphs. We introduce an amenability criterion for such groups based on the recurrence of the first-level action. This criterion is a natural extension of the result that all groups generated by bounded activity automata with finite alphabets are amenable. Our motivation comes from the investigation of iterated monodromy groups of entire transcendental functions in holomorphic dynamics.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 7","pages":"2460-2471"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13065","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13065","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the action of groups generated by bounded activity automata with infinite alphabets on their orbital Schreier graphs. We introduce an amenability criterion for such groups based on the recurrence of the first-level action. This criterion is a natural extension of the result that all groups generated by bounded activity automata with finite alphabets are amenable. Our motivation comes from the investigation of iterated monodromy groups of entire transcendental functions in holomorphic dynamics.

无穷字母表上有界自动机群的可篡改性
我们研究了由具有无限字母表的有界活动自动机产生的群对其轨道施赖尔图的作用。我们根据第一级作用的递推性,为这类群引入了一个可亲性准则。这个标准是由有限字母的有界活动自动机生成的所有组都是可和的这一结果的自然延伸。我们的研究动机来自对全态动力学中全超越函数的迭代单旋转群的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信