Poincaré series and linking of Legendrian knots

IF 2.3 1区 数学 Q1 MATHEMATICS
Nguyen Viet Dang IMJ-PRG, Iuf, Gabriel Rivière
{"title":"Poincaré series and linking of Legendrian knots","authors":"Nguyen Viet Dang IMJ-PRG, Iuf, Gabriel Rivière","doi":"10.1215/00127094-2023-0008","DOIUrl":null,"url":null,"abstract":"On a negatively curved surface, we show that the Poincare series counting geodesic arcs orthogonal to some pair of closed geodesic curves has a meromorphic continuation to the whole complex plane. When both curves are homologically trivial, we prove that the Poincare series has an explicit rational value at 0 interpreting it in terms of linking number of Legendrian knots. In particular, for any pair of points on the surface, the lengths of all geodesic arcs connecting the two points determine its genus, and, for any pair of homologically trivial closed geodesics, the lengths of all geodesic arcs orthogonal to both geodesics determine the linking number of the two geodesics.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2023-0008","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

On a negatively curved surface, we show that the Poincare series counting geodesic arcs orthogonal to some pair of closed geodesic curves has a meromorphic continuation to the whole complex plane. When both curves are homologically trivial, we prove that the Poincare series has an explicit rational value at 0 interpreting it in terms of linking number of Legendrian knots. In particular, for any pair of points on the surface, the lengths of all geodesic arcs connecting the two points determine its genus, and, for any pair of homologically trivial closed geodesics, the lengths of all geodesic arcs orthogonal to both geodesics determine the linking number of the two geodesics.
Poincaré 系列和 Legendrian 节的连接
在负弯曲表面上,我们证明了计算与某对封闭测地曲线正交的测地弧的庞加莱数列具有到整个复平面的同构延续。当两条曲线都是同源琐碎曲线时,我们证明波恩卡列数列在 0 处有一个明确的有理值,用 Legendrian 节的链接数来解释它。特别是,对于曲面上的任意一对点,连接两点的所有大地弧的长度决定了其属数,而对于任意一对同源琐细的闭合大地线,与两条大地线正交的所有大地弧的长度决定了两条大地线的连接数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信