{"title":"Pyrazoles as Anti-inflammatory and Analgesic Agents: <i>In-vivo</i> and <i>In-silico</i> Studies.","authors":"Geeta Chahal, Jyoti Monga, Isha Rani, Shubham Saini, Manish Devgun, Asif Husain, Sukhbir Lal Khokra","doi":"10.2174/0118715230275741231207115011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pyrazole is a well-known nucleus in the pharmacy field with a wide range of other activities in addition to anti-inflammatory and analgesic, i.e., anticonvulsant, antiviral, and anticancer activities. There are well-known marketed drugs having pyrazole moiety as celecoxib, and lonazolac as COX-II inhibitors.</p><p><strong>Aims: </strong>We aim to synthesize better anti-inflammatory than existing ones. Thiophene is also known for its analgesic and anti-inflammatory action. Thus, the fusion of both gives better anti-inflammatory agents. In the present studies, derivatives from two series of pyrazole were prepared by reacting substituted chalcone (3a-3f) derivatives prepared from 2-acetyl thiophene. They substituted aromatic aldehydes with phenyl hydrazine to form (5a-5f) and with 2, 4-dinitro phenyl hydrazine giving compounds (6a-6f) separately.</p><p><strong>Methods: </strong>Purified and characterized pyrazoles have been analyzed for <i>in-vivo</i> analgesic and anti-inflammatory activities by using standard methods. Compounds 5e, 5f, and 6d were proved to be potent analgesics and series (5a-5f) was found to have anti-inflammatory action, which was further validated using docking and ADME studies.</p><p><strong>Results: </strong>The ADME profile of synthesized compounds was found to be satisfactory.</p><p><strong>Conclusion: </strong>The synthesized compounds can serve as lead for further drug designing.</p>","PeriodicalId":94368,"journal":{"name":"Anti-inflammatory & anti-allergy agents in medicinal chemistry","volume":"23 1","pages":"39-51"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-inflammatory & anti-allergy agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715230275741231207115011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pyrazole is a well-known nucleus in the pharmacy field with a wide range of other activities in addition to anti-inflammatory and analgesic, i.e., anticonvulsant, antiviral, and anticancer activities. There are well-known marketed drugs having pyrazole moiety as celecoxib, and lonazolac as COX-II inhibitors.
Aims: We aim to synthesize better anti-inflammatory than existing ones. Thiophene is also known for its analgesic and anti-inflammatory action. Thus, the fusion of both gives better anti-inflammatory agents. In the present studies, derivatives from two series of pyrazole were prepared by reacting substituted chalcone (3a-3f) derivatives prepared from 2-acetyl thiophene. They substituted aromatic aldehydes with phenyl hydrazine to form (5a-5f) and with 2, 4-dinitro phenyl hydrazine giving compounds (6a-6f) separately.
Methods: Purified and characterized pyrazoles have been analyzed for in-vivo analgesic and anti-inflammatory activities by using standard methods. Compounds 5e, 5f, and 6d were proved to be potent analgesics and series (5a-5f) was found to have anti-inflammatory action, which was further validated using docking and ADME studies.
Results: The ADME profile of synthesized compounds was found to be satisfactory.
Conclusion: The synthesized compounds can serve as lead for further drug designing.