Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-06-01 Epub Date: 2024-05-31 DOI:10.1117/1.JBO.29.6.067001
Yu Xi Huang, Simon Mahler, Maya Dickson, Aidin Abedi, Julian Michael Tyszka, Yu Tung Lo, Jonathan Russin, Charles Liu, Changhuei Yang
{"title":"Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow.","authors":"Yu Xi Huang, Simon Mahler, Maya Dickson, Aidin Abedi, Julian Michael Tyszka, Yu Tung Lo, Jonathan Russin, Charles Liu, Changhuei Yang","doi":"10.1117/1.JBO.29.6.067001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain.</p><p><strong>Aim: </strong>Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution.</p><p><strong>Approach: </strong>The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz.</p><p><strong>Results: </strong>Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head.</p><p><strong>Conclusions: </strong>Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 6","pages":"067001"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140771/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.6.067001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain.

Aim: Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution.

Approach: The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz.

Results: Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head.

Conclusions: Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.

用于测量脑血流量的紧凑型、经济高效的激光驱动斑点对比光学光谱无光纤装置。
意义重大:在脑血管监测领域,主要指标通常包括血压,而血压会影响脑血流量(CBF)并取决于血管半径。目的:我们的研究旨在推出一种紧凑型斑点对比光学光谱设备,用于在长距离源到探测器之间进行无创 CBF 测量,该设备具有成本效益和可扩展性,同时能以显著的灵敏度和时间分辨率跟踪血流(BF):方法:可穿戴传感器模块仅由一个激光二极管和一个板载摄像头组成。方法:可穿戴式传感器模块仅由激光二极管和板式摄像头组成,可方便地戴在受试者头上,以 80 Hz 的采样率测量血流:结果:与基于单光纤的版本相比,所提出的装置实现了约 70 倍的信号增益,在长距离测量血流频率时表现出卓越的稳定性、可重复性和信噪比。该装置可以多种配置分布在头部周围:鉴于其成本效益、可扩展性和简易性,这种以激光为中心的工具在推进无创大脑监测技术方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信