Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes.

IF 3.3 2区 生物学 Q2 MYCOLOGY
Mycorrhiza Pub Date : 2024-07-01 Epub Date: 2024-06-03 DOI:10.1007/s00572-024-01154-8
Daquan Sun, Martin Rozmoš, Vasilis Kokkoris, Michala Kotianová, Hana Hršelová, Petra Bukovská, Maede Faghihinia, Jan Jansa
{"title":"Unraveling the diversity of hyphal explorative traits among Rhizophagus irregularis genotypes.","authors":"Daquan Sun, Martin Rozmoš, Vasilis Kokkoris, Michala Kotianová, Hana Hršelová, Petra Bukovská, Maede Faghihinia, Jan Jansa","doi":"10.1007/s00572-024-01154-8","DOIUrl":null,"url":null,"abstract":"<p><p>Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used <sup>15</sup>N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of <sup>15</sup>N to the plants than the passive transfer of <sup>15</sup>N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater <sup>15</sup>N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283409/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01154-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used 15N-chitin as the isotopically labeled organic N source. In Experiment 1 (in vitro), mycelium of all AM fungal genotypes transferred a higher amount of 15N to the plants than the passive transfer of 15N measured in the non-mycorrhizal (NM) controls. Noticeably, certain genotypes (e.g., LPA9) showed higher extraradical mycelium biomass production but not necessarily greater 15N acquisition than the others. Experiment 2 (in pots) highlighted that some of the AM fungal genotypes (e.g., MA2, STSI) exhibited higher rates of targeted hyphal exploration of chitin-enriched zones, indicative of distinct N exploration patterns from the other genotypes. Importantly, there was a high congruence of hyphal exploration patterns between the two experiments (isolate STSI always showing highest efficiency of hyphal exploration and isolate L23/1 being consistently the lowest), despite very different (micro) environmental conditions in the two experiments. This study suggests possible strategies that AM fungal genotypes employ for efficient N acquisition, and how to measure them. Implications of such traits for local mycorrhizal community assembly still need to be understood.

Abstract Image

揭示不规则根瘤菌(Rhizophagus irregularis)基因型之间头状花序探索性特征的多样性。
不同基因型的丛枝菌根(AM)真菌之间的功能差异可决定它们在特定环境条件下的适应性,尽管对其基本机制的了解仍然非常零散。在这里,我们比较了不规则根瘤菌(Rhizophagus irregularis)的七个同源分离株(基因型),目的是确定种内变异的范围,包括菌丝对有机氮(N)资源的开发以及对植物的氮供应。为此,我们进行了两次实验(一次在体外,一次在露天盆栽),并使用 15N 甲壳素作为同位素标记的有机氮源。在实验 1(体外)中,所有 AM 真菌基因型的菌丝体向植物转移的 15N 量都高于非菌根(NM)对照组被动转移的 15N 量。值得注意的是,某些基因型(如 LPA9)显示出更高的菌丝外生物量,但并不一定比其他基因型获得更多的 15N。实验 2(盆栽)突出表明,一些 AM 真菌基因型(如 MA2、STSI)在富含几丁质的区域表现出更高的目标性菌丝探索率,表明其对氮的探索模式与其他基因型不同。重要的是,尽管两个实验的(微)环境条件截然不同,但两个实验之间的菌丝探索模式高度一致(分离株 STSI 始终表现出最高的菌丝探索效率,而分离株 L23/1 始终是最低的)。这项研究提出了调幅真菌基因型高效获取氮的可能策略,以及如何测量这些策略。这些特征对当地菌根群落组合的影响仍有待了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信