A microfluidic platform for the synthesis of polymer and polymer-protein-based protocells

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Jessica Ann O’Callaghan, Neha P. Kamat, Kevin B. Vargo, Rajarshi Chattaraj, Daeyeon Lee, Daniel A. Hammer
{"title":"A microfluidic platform for the synthesis of polymer and polymer-protein-based protocells","authors":"Jessica Ann O’Callaghan,&nbsp;Neha P. Kamat,&nbsp;Kevin B. Vargo,&nbsp;Rajarshi Chattaraj,&nbsp;Daeyeon Lee,&nbsp;Daniel A. Hammer","doi":"10.1140/epje/s10189-024-00428-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, we demonstrate the fabrication of polymersomes, protein-blended polymersomes, and polymeric microcapsules using droplet microfluidics. Polymersomes with uniform, single bilayers and controlled diameters are assembled from water-in-oil-in-water double-emulsion droplets. This technique relies on adjusting the interfacial energies of the droplet to completely separate the polymer-stabilized inner core from the oil shell. Protein-blended polymersomes are prepared by dissolving protein in the inner and outer phases of polymer-stabilized droplets. Cell-sized polymeric microcapsules are assembled by size reduction in the inner core through osmosis followed by evaporation of the middle phase. All methods are developed and validated using the same glass-capillary microfluidic apparatus. This integrative approach not only demonstrates the versatility of our setup, but also holds significant promise for standardizing and customizing the production of polymer-based artificial cells.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11147907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00428-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we demonstrate the fabrication of polymersomes, protein-blended polymersomes, and polymeric microcapsules using droplet microfluidics. Polymersomes with uniform, single bilayers and controlled diameters are assembled from water-in-oil-in-water double-emulsion droplets. This technique relies on adjusting the interfacial energies of the droplet to completely separate the polymer-stabilized inner core from the oil shell. Protein-blended polymersomes are prepared by dissolving protein in the inner and outer phases of polymer-stabilized droplets. Cell-sized polymeric microcapsules are assembled by size reduction in the inner core through osmosis followed by evaporation of the middle phase. All methods are developed and validated using the same glass-capillary microfluidic apparatus. This integrative approach not only demonstrates the versatility of our setup, but also holds significant promise for standardizing and customizing the production of polymer-based artificial cells.

Abstract Image

用于合成聚合物和聚合物-蛋白质原胞的微流体平台。
在这项研究中,我们展示了利用液滴微流体技术制造聚合体、蛋白质混合聚合体和聚合物微胶囊的过程。具有均匀、单一双层和可控直径的聚合体是由水包油水双乳液液滴组装而成的。这种技术依靠调整液滴的界面能,将聚合物稳定的内核与油壳完全分离。蛋白质混合聚合体是通过将蛋白质溶解在聚合物稳定液滴的内相和外相中来制备的。细胞大小的聚合物微胶囊是通过渗透作用减小内核尺寸,然后蒸发中间相来组装的。所有方法都是使用相同的玻璃毛细管微流体设备开发和验证的。这种综合方法不仅展示了我们装置的多功能性,而且为基于聚合物的人工细胞的标准化和定制化生产带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信